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Abstract

GNSS receiver designers extensively use models to describe the effects of the

local environment, particularly multipath, on a received GNSS signal. These models

are used to construct simulators in order to generate data that can be used to test

receiver signal processing techniques. Though there are many models and simulators

available which feature multipath effects, the legitimacy of these models is question-

able, depending on how the model is constructed. There is an ongoing need in the

GNSS community for the development of high-fidelity simulators which generate data

that replicates what can truly be expected from a challenging environment such as an

urban canyon or an indoor environment. The algorithm developed for use in the re-

search in this dissertation, the Signal Decomposition and Parameterization Algorithm

(SDPA), is presented in order to respond to this need. This algorithm is designed

to decompose a signal received using a GNSS recording and playback system and

output parameters that can be used to reconstruct the effects on the signal of the

environment local to the receiver at the time of recording.

There are two principal contributions to the community made with this re-

search. First, the SDPA itself is presented and compared with what is believed to be

the state-of-the-art in GNSS multipath parameterization, a Space Alternating Gen-

eralized Expectation Maximization (SAGE) algorithm. Second, the development and

characterization of a stopping criteria that can be used to halt the SDPA when pa-

rameterization of salient components within a recorded signal has been completed.

Presented in this document is the finding that, for an integration period equal

to the duration of a complete GPS C/A code sequence (1 msec), SDPA outperforms

a SAGE-based algorithm at a carrier-to-noise ratio C/N0 of 40 dB-Hz or below. This

finding exposes the existence of scenarios where decomposition of GNSS received

signals is more appropriately performed using SDPA rather than with SAGE.
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Modeling the Effects of the Local

Environment on a Received GNSS Signal

I. Introduction

This dissertation presents the Signal Decomposition and Parameterization Al-

gorithm (SDPA), as well as the stopping criteria required in order to halt processing

of SDPA. This iterative algorithm is designed to decompose recorded Global Navi-

gation Satellite System (GNSS) signals in order to obtain estimates associated with

both direct path and multipath ray waveforms. As part of this research, a stopping

criteria is developed for use in halting decomposition iterations.

This chapter provides a purpose statement in Section 1.1, a brief statement

on the background behind this research in Section 1.2, a summary of the specific

problem at hand addressed with this research in Section 1.3, the scope of the research

in Section 1.4, and an overview of the dissertation in Section 1.5.

1.1 Purpose

This document presents two principal contributions to the body of work in

the area of GNSS receiver signal processing, modeling, and simulation. The first

contribution is the development of SDPA. SDPA is a signal decomposition algorithm

that offers, in limited and specific scenarios, the ability to better reduce the RMS

error between the true signal and the estimated signal when transformed to a time-

frequency domain (using the short-time Fourier transform) versus the state of the

art. The second contribution is the development of a stopping criteria to be used in

conjunction with SDPA.

1.2 Background

A GNSS, such as the Global Positioning System (GPS), uses signals transmit-

ted from satellites to obtain precise timing information at a receiving antenna. These
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signals are subject to many error sources, such as ionospheric and tropospheric effects,

that distort the originally transmitted signal. In position computations conducted in

modern GNSS receivers, a major source of error is typically attributed to the impact

that features in the local environment have on received signals, to include multipath

propagation. The features in the environment local to the GNSS receiver antenna

distort the line-of-sight (LOS) signal required to accurately obtain the pseudorange

measurements used in computing the position of the receive antenna. Different en-

vironments will have different effects on received GNSS signals. The dominant error

source associated with these local environmental effects is referred to as multipath

propagation, the reception of replicas of the transmitted signal that have traversed

multiple, varying paths between the transmitter and receiver. The timing of GNSS

signal reception is critical to accurate positioning, and the presence of multipath in a

received signal degrades the accuracy of signal reception timing estimation. Therefore,

multipath continues to be addressed in GNSS research.

GNSS receiver signal processing technique designers use multipath models ex-

tensively as they work to reduce geopositioning errors. These models are used to

construct simulators in order to generate data that can be used to test these receiver

signal processing techniques. Though there are many models and simulators available

which feature multipath effects, the legitimacy of these models is sometimes ques-

tionable, depending on how the model is constructed. There is an ongoing need in

the GNSS community for the development of high-fidelity simulators which generate

data that replicates what can truly be expected from a challenging environment such

as an urban canyon or an indoor environment. The algorithm developed for use in

the research in this dissertation, SDPA, is presented in order to respond to this need.

This algorithm is designed to decompose a signal received using a GNSS recording and

playback system and output parameters that can be used to reconstruct the effects

on the signal of the environment local to the receiver at the time of recording.

2



1.3 Problem Statement

As of now, the fidelity made available with GNSS simulators is limited. The

problem that arises because of this is that techniques developed to mitigate the effects

of the local environment on received GNSS signals cannot be effectively tested. This

is because these techniques are tested using simulated signals, rather than signals

impacted by real-world environmental effects. Because of this discrepancy between

simulated and real-world signal characteristics, mitigation techniques are often devel-

oped and verified in the lab, only to be deployed for use unsuccessfully because of

the model’s lack of adherence to the characteristics of the true environment. This

problem may be alleviated through the use of a recording and playback system. A

system such as this is used to record real-world GNSS signals, and then replay these

recorded signals. This is distinct from a simulator that uses models to construct

signals that demonstrate propagation effects that would be present in the channel.

The advantage of a recording and playback system is that there is no uncertainty

regarding the validity of the effects observed in the recorded signal. The disadvantage

of this system is that no models are obtained that can be used in mathematically

describing the channel. The goal in this research is to bridge the gap between signals

generated using mathematical models and recorded real-world signals, through the

use of a hybrid system. This hybrid system offers both the advantages of a record-

ing and playback system and a system that uses an analytic model to generate data.

Propagation effects contained in recorded data would be analyzed in software in order

to obtain statistics for describing these effects. These statistics could then be used to

model propagation effects.

A condition placed on this hybrid system is that each segment of received data

be considered independently from other segments of received data in the estimation

of parameters. The independent consideration of each data segment eliminates the

possibility that errors in the estimation of parameters from previously considered data

segments will impact the estimation of parameters from the data segment currently

3



being considered, as may be the case when using an architecture that employs tracking

loops.

This hybrid system makes use of an iterative signal decomposition methodology.

Since the approach is iterative, there is a need to develop a stopping criteria to direct

the algorithm to halt decomposition. If there is no stopping criteria developed, time

is wasted on processing the received signal beyond the point where decomposition

outputs are optimal, or even meaningful.

1.4 Scope

In this research, only GPS civil signals (L1 C/A-coded signals) will be consid-

ered, though the results obtained in this work will generally apply to other GNSS

signal types, or generalized wireless communications signaling that makes use of di-

rect sequence spread spectrum waveforms. GNSS signal parameter estimation error

sources that are considered in this dissertation include only additive white Gaussian

noise and GNSS signal replicas to serve as multipath waveforms, as would be found

in conventional GNSS signal plus multipath models.

1.5 Dissertation Overview

A survey of literature on the modeling and simulation of GNSS signals, on mul-

tipath propagation, and the state-of-the-art in multipath parameter estimation for

GNSS (application of the Space-Alternating Generalized Expectation Maximization

algorithm, or SAGE) is provided in Chapter II. The Signal Decomposition and Pa-

rameterization Algorithm is described in canonical detail and compared with SAGE,

in terms of methodology, in Chapter III. Results of comparisons between SDPA and

SAGE are provided in Chapter IV with an emphasis on the scenario in which SDPA

outperforms SAGE. Chapter V outlines the methodology and the characterization of

the stopping criteria designed for use in SDPA, with additional consideration of appli-

cation of the same stopping criteria in conjunction with a SAGE-based decomposition

4



engine. This dissertation is concluded in Chapter VI, and includes recommendations

for future research.
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II. Background

2.1 Introduction

This chapter provides the background theory that underpins the research find-

ings reported in this dissertation. A general analytic GNSS signal model, both trans-

mitted and received (with and without multipath propagation effects), is provided in

Section 2.2. Section 2.3 briefly describes how GNSS signals are processed in standard

receivers, in terms of both the analog-to-digital pre-processing of the received signal

and the processing to obtain the measurements required to compute the position of

the receive antenna. Section 2.4 provides background from literature in the areas of

multipath propagation and the effect that multipath has on GNSS signaling. Section

2.5 provides background information for the techniques used in processing GNSS sig-

nals in this research, which are generally used to parameterize multipath signatures

contained in the received GNSS signal and to track the variations in these signa-

tures over time. Section 2.6 outlines the theory behind and framework for the GNSS

receiver signal processing technique called the Space Alternating Generalized Expec-

tation Maximization (SAGE) algorithm, which is the existing algorithm that most

closely resembles the SDPA technique developed for the research outlined in this dis-

sertation. Section 2.7 provides background on the Multipath Estimating Delay Locked

Loop receiver design, an approach to multipath parameter estimation that is similar

to SAGE but requires use of a delay locked loop structure. Section 2.8 provides the

theoretical foundation used in the development of the stopping criteria developed as

part of SDPA. Background information on the current state of GNSS simulation is

provided in Section 2.9. Finally, background information on the structure of GNSS

signals from global constellations other than GPS is presented in Section 2.10.

2.2 Analytic Models of GNSS Signaling

In this research, only GPS coarse acquisition (C/A-coded) civil signals are con-

sidered (versus other radionavigation signals, such as GPS military (P(Y)), Compass,

or GLONASS signals), so discussion of analytic expressions will be limited to the

6



C/A-coded waveform. A model is first presented for the transmitted signal in Sec-

tion 2.2.1, then a model for the GPS signal received in a noisy environment with no

multipath effects in Section 2.2.2, and then a model for the GPS signal received in a

noisy environment with multipath effects in Section 2.2.3.

To describe GPS signal models analytically, the following equations and nota-

tion are used. To achieve the accuracy GPS potentially offers, one must be able to

process GPS signals that are transmitted in the continuous-time domain through the

wireless channel. These signals therefore are expressed in notation making use of

a continuous, as opposed to a discrete, time variable, t. However, all of the signal

processing in the software-defined receivers employed in this research deals with time

exclusively in the discrete (sampled) domain, where a variable such as n is used. It

therefore becomes necessary to map variables and equations from the continuous to

the discrete domain in order to ensure that analytic expressions from multiple domains

are unified in functional outcome. The analytic models presented in [1] will addition-

ally have to be adapted to accommodate multipath propagation. The adaptation for

the presence of multipath-propagated waveforms will make use of the theory found in

digital communications literature [2] [3]. Before this is done, the fundamental GPS

signaling equations will be presented.

GPS radionavigation, which is a subset of GNSS radionavigation, is defined for

the purposes of this prospectus as the communication of signals that are transmit-

ted from the GPS space segment, the GPS space vehicles (SV) that orbit the earth

specifically to transmit radionavigation signals. These radionavigation signals are re-

ceived by users composing the GPS user segment after communication through the

wireless channel between the satellite and the earth. Terrestrial users are considered

for the results outlined in this dissertation, more specifically ground-based fixed or

mobile receivers (either pedestrian or automobile mounted). This does not, however,

preclude the application of this research to receivers onboard aircraft.
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The operational GPS constellation originally made primary use of two center

frequencies, referred to as L1 and L2, to transmit radionavigation signals. These two

frequencies are fL1 = 1575.42 MHz and fL2 = 1227.60 MHz [1] respectively. The

frequency of interest for this research is fL1 and is referred to as L1 for the remainder

of this document.

The GPS radionavigation signal transmitted on L1 consists of a signal that

is open and can be decoded for use by civil users, and a signal that is protected

for use only by DoD-authorized users. The open signal provides what is called the

Standard Positioning Service (SPS) [4], and the protected signal provides what is

called the Precise Positioning Service (PPS) [5]. The key feature distinguishing the

PPS from the SPS for the signals transmitted on L1 is the specific pseudorandom noise

(PRN) sequences modulated within these waveforms. The SPS PRN sequence itself

is available to the public for use in civil satellite navigation applications, such as GPS

for transportation, whereas the PPS PRN sequence is protected. Furthermore, the

SPS PRN sequence if of length 1023 chips, and repeats every millisecond [1]. The PPS

PRN sequence has a chipping rate of 10.23 MHz and repeats every week. Only the L1

SPS signal is considered for this research, so only the SPS PRN sequence is described.

The PRN sequence used by the SPS is referred to as the coarse acquisition (C/A)-

coded sequence. Each GPS SV transmits a different C/A code (numbered simply

from one to 32, so different PRN sequences are referred to as PRN 1, PRN 2, etc.),

which enables the terrestrial user of the GPS radionavigation signals to distinguish

between signals sent from different SVs. Each C/A-coded PRN sequence consists of a

sequence of Nc = 1023 bits [4], referred to as chips in spread spectrum communication

literature, which is used to provide differentiation between radionavigation signals

from different SVs, and to provide relatively accurate timing information to GPS

users. The C/A-coded PRN sequence is repeated every millisecond.

Each GPS C/A-coded signal transmitted on L1 also contains a navigation data

message. The message provides information to GPS users on the position of the

transmitting satellite, as well as other salient parameters. The message is transmit-
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ted using a binary phase shift-keyed digital modulation (which is discussed generally

in [2] and [3], and will not be further explained here), so the navigation data mes-

sage will simply consist of a bitstream that is translated into digital communications

symbol values. For each bit in the navigation data message, there is a distinct digital

communications symbol associated with the bit value. There are two possible bit

values (0 and 1), therefore there are two possible symbol values (-1 and +1). These

symbol values are transmitted at a rate of 50 bits per second [1]. The leading edge

of a navigation data symbol is aligned with the leading edge of the start of the first

of the Nc = 1023 chips in a C/A-coded PRN sequence. The trailing edge of a nav-

igation data symbol is aligned with the trailing edge of the last of the 1023 chips in

a C/A-coded PRN sequence. Therefore, exactly 20 instances of the C/A-coded PRN

sequence can be found in each of the navigation data message symbols.

2.2.1 Transmitted Signal. The equation for the transmitted GPS L1 C/A-

coded signal from the kth of 32 operationally-signaling satellites, s
(k)
L1 (t), are as follows

[1]:

s
(k)
L1 (t) =

√
2PCx

(k)(t)D(k)(t) cos
(

2πfL1t+ φ
(k)
t

)
(2.1)

where PC is the average power of the GPS L1 C/A-coded signal,
√

2PC is the peak

amplitude of the transmitted GPS L1 C/A-coded civil signal, x(k)(t) is the value of

the chip within the C/A-coded PRN sequence used for spread spectrum modulation

for the kth PRN at time t, D(k)(t) is the navigation data symbol value for the kth

PRN at time t, fL1 is the center frequency of the L1 signal transmitted by a GPS

satellite (1575.42 MHz), and φ
(k)
t is the carrier phase offset of the L1 signal for the

kth PRN.

Through the remainder of this description, the equations will be treated as

having originated from a single SV chosen in advance, so notation for the kth SV is

neglected furthermore in this document. Therefore, the above equation is restated as

follows:

sL1(t) =
√

2PCx(t)D(t) cos (2πfL1t+ φt), t ≥ 0, t ∈ R (2.2)
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Note the constraint that t ≥ 0. This constraint is not necessary to describe GPS

signals, and is generally not found in literature on the subject, but is used later in

this development (2.14)

As stated above, the C/A-coded transmission is modulated using the C/A code

signal x(t). The C/A waveform x(t) consists of a series of pulses, referred to as chips,

that are varied at a frequency of 1023 chips per msec. Since the C/A chip sequence is

of length 1023, this means that the chip sequence repeats every msec. The C/A chip

sequence is generated using Gold codes [1], and is expressed as follows:

x(t) ∈ {1,−1} (2.3)

One period (of duration 1 msec) of the C/A code can be expressed as follows [1]:

x(t) =
N−1∑
n=0

xnp

(
t− nTc
Tc

)
(2.4)

where N = 1023 chips, xn is the value of the nth element in the vector of chip values

in the C/A PRN sequence of length 1023, p(t) is a pulse waveform (with unit height,

unit width, and centered at the origin), and Tc = 1/1.023 µsec and is the duration of

any chip in the C/A PRN sequence.

The C/A-coded signal is also modulated using a data sequence D(t). The data

sequence is transmitted at a frequency of 50 bits per sec, in alignment with the C/A-

coded chips (so the beginning and end of data bits align in time with the beginning

and end of frames, respectively). The set of possible data sequence values is expressed

as follows:

D(t) ∈ {1,−1} (2.5)

The initial carrier phase φt can vary arbitrarily as follows, as a function of any

phase shifts that occur within the transmitter circuitry in the SV.

φt ∈ [−π, π) (2.6)
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2.2.2 Received Signal in the Absence of Multipath Effects. When the signal

is transmitted through the wireless channel, several channel effects will impact the

structure of the transmitted signal. These effects include the loss of power as the

signal propagates away from the transmitter, referred to in literature as path loss; the

addition of white Gaussian noise due to thermal noise within the receiver and natural

noise from sources external to the receiver [1]; the variation in velocity of transmission

of portions of the signal broadcast at different frequencies, particularly through the

ionosphere, and referred to as code-carrier divergence; and the shift of the signal in

frequency due to the Doppler effect among other phenomena [1]. These effects are

contained intrinsically in the model of the LOS received signal rLOS(t) expressed as

follows [1]:

rLOS(t) =
√

2PrD(t− τ)x(t− τ) cos (2π (fL1 + fD) t+ φr) + η(t) (2.7)

where Pr is the average power of the received signal (Pr << PC), D(t − τ) is the

value of the navigation data message symbol at time t− τ , τ is the estimated time of

signal propagation between the transmitter and receiver (propagation delay), x(t− τ)

is the value of the C/A-coded chip at time t − τ , fD is the value of the Doppler

frequency offset from L1 incurred by the propagated signal, φr is the carrier phase

offset of the received signal, and η(t) is the white Gaussian noise added at time t to

the signal during propagation. The global delay parameter τ in this equation is used

to communicate the delay in propagation between signal reception and transmission.

Estimation of this delay yields what is called the pseudorange, and provides the sub-

sequent numerical basis for the ubiquitous ability to compute position using satellite

radionavigation signals.

2.2.3 Addition of Multipath Propagation Effects to Received Signal . The

model for the received signal expressed in (2.7) does not sufficiently describe the re-

ceived signal in the presence of multipath. The model must therefore be extended

to incorporate the effects of multipath propagation. To do this, the traditional ray
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propagation model is used, as found in communications literature [2] [3]. The multi-

path signal will be treated simply as one that has propagated through a path other

than the LOS path. This second propagation path will have the potential to vary

the average power of the multipath signal relative to the LOS signal, the potential

to induce an additional Doppler shift upon the originally Doppler-shifted LOS signal,

the potential for addition of further delay than what is incurred with the LOS signal,

and the potential to shift the carrier phase relative to the LOS signal. Furthermore,

there is the potential for an arbitrary number of non-LOS paths to propagate the

broadcasted signal toward the receive antenna. To communicate this possibility, the

following model for describing the complete received signal r(t) is used [3]:

r(t) = rLOS(t) + rM(t) + η(t) (2.8)

where

rM(t) =
M∑
m=1

αm
√

2PD(t− τm)x(t− τm) cos (2π (fL1 + fDm) t+ φrm) (2.9)

In these two equations, m expresses the mth of M multipath rays, αm is a scaling

term expressing the attenuation of the mth multipath ray relative to the LOS ray,

D(t − τm) is the value of the navigation data message symbol at time t − τm, τm is

the time of propagation incurred by the mth multipath ray, x(t − τm) is the value

of the C/A-coded chip at time t− τm, fDm is the Doppler shift incurred by the mth

multipath ray, and φrm is the carrier phase shift incurred by the mth multipath ray.

Alternately, the model can be expressed as follows, treating the LOS signal as

the first ray in the summation:

r(t) =
M∑
m=0

αm
√

2PD(t− τm)x(t− τm) cos (2π (fL1 + fDm) t+ φrm) + η(t) (2.10)
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where the LOS ray is the 0th multipath ray, α0 = 1, τ0 = τ , fD0 = fD, and φr0 = φ.

This model will be used to fundamentally describe the received signal throughout the

remainder of this document.

2.3 Simple Receiver Processing of GNSS Signals

Simple software-defined GNSS receivers make use of two separate processes. The

first is the analog-to-digital pre-processing that is performed within what is typically

referred to as the “RF front end” processing. This first step will be conducted every

time real-world data is considered as part of this research, and is outlined in Section

2.3.1. The second is the process of obtaining measurements required to compute the

position of the receive antenna. In a software-defined receiver, this second process is

performed using software written to direct the execution of measurement generation.

This second step is not researched for this dissertation, though elements of this step

will be used to divide the GPS signal into C/A code frames, and is discussed in Section

2.3.2.

2.3.1 Analog-to-Digital Pre-Processing. There are two subprocesses under-

taken by a software-defined GNSS receiver in order to have digital data that can be

manipulated using software. The first subprocess is downconversion of the received

RF signal to an intermediate frequency (IF), as described in Section 2.3.1.1. The

second subprocess is sampling of the downconverted IF signal, as described in Section

2.3.1.2.

2.3.1.1 Downconversion of the RF Signal to an Intermediate Frequency.

Upon receiving the signal that has been subjected to channel effects (multipath

interference and other propagation effects), the signal is downconverted and filtered

[1]. This is true in the case of the GPS receiver considered in this research, the

Transform-Domain Instrumentation GNSS Receiver (TRIGR) [6]. Assuming the filter

to be an ideal bandpass filter, the model for the received, downconverted, and filtered
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signal is expressed as follows:

rIF (t) =
M∑
m=0

αm
√
CD(t− τm)x(t− τm) cos (2π (fIF + fDm) t+ φm) + η(t) (2.11)

where C is the average power of the received LOS signal at the input into the analog-

to-digital converter (ADC) inside the receiver, fIF is the intermediate frequency of the

receiver, and φm is the carrier phase of the mth multipath ray at the input into the

ADC. Note at this point that the carrier phase of the multipath ray input to the ADC

may be completely different from the carrier phase of the original received signal. This

does not impact how the signal is processed. Again, the equation above is a model

that makes use of the assumption of ideal bandpass filtering in its development.

This process of receiving, downconverting, and filtering is assumed to be true

in the case of signals recorded using the TRIGR receiver, but it does not sufficiently

describe the downconversion and filtering process for a receiver that performs in-phase

and quadrature sampling. Therefore, the following models are assumed for the in-

phase and quadrature signals, iIF (t) and qIF (t) respectively, that have been received,

downconverted, and filtered.

iIF (t) =
M∑
m=0

αm
√
CD(t− τm)x(t− τm) cos (2π (fIF + fDm) t+ φm) + ηi(t) (2.12)

and

qIF (t) =
M∑
m=0

αm
√
CD(t− τm)x(t− τm) sin (2π (fIF + fDm) t+ φm) + ηq(t) (2.13)

where rIF (t) and qIF (t) both have independent noise terms ηi(t) and ηq(t) added to

them. This is because both the in-phase signals and quadrature signals will have noise

added to them.

2.3.1.2 Sampling of the Intermediate Frequency Signal. Sampling

of the generalized model for a multipath-laden received and downconverted signal
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rIF (t) requires that sampling theory first be discussed. Sampling is assumed to be

performed periodically with an ideal ADC, so a model of a sequence of samples of the

continuous-time signal rIF (t), the discrete-time expression of which would be r[n], is

as follows [7]:

r[n] = rIF(nTs), n ∈ N (2.14)

where n is the sample index and Ts is the sampling period. Note that because of

the presence of the baseband filter in-line between the antenna and the ADC, it is

assumed that there is no aliasing present in rIF [n].

As with the downconversion and filtering processes, the sampling process above

is assumed as true in the case of signals recorded using the TRIGR receiver, but it

does not sufficiently describe sampling using a receiver that performs simultaneous

sampling of the in-phase and quadrature signals. The sequences of samples of the

continuous-time in-phase and quadrature signals, iIF (t) and qIF (t), the discrete time

expressions of which would be i[n] and q[n] respectively, will be modeled as follows:

i[n] = iIF (nTs), n ∈ N (2.15)

and

q[n] = qIF(nTs), n ∈ N (2.16)

Again, as with the model for r[n], it is assumed there is no aliasing present in iIF[n]

and qIF[n].

Equivalently, the in-phase and quadrature signals i[n] and q[n] can be approx-

imately treated as having been generated by performing a Hilbert transform of the

received signal r[n] [2] [7]; where the real signal is simply shifted in phase π/2 radi-

ans; to obtain the imaginary signal. This use of the real and imaginary signals yields

the in-phase and quadrature signals. The same information can be obtained from

the received GPS signal regardless of whether only the real signal is sampled, as in

the TRIGR receiver, or the real and imaginary signals are simultaneously sampled.
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Wherever a process must accommodate a specific type of sampling, the process will

highlight the accommodation in this document.

Furthermore, through the remainder of this document, equations are attempted

to be expressed without being constrained by whether or not the sampling is being

conducted with simple real-valued received signals or with in-phase and quadrature

signals. To alleviate this, r[n] is expressed to mean either r[n] ∈ < ∀n or the following:

r[n] = i[n] + jq[n] (2.17)

where j =
√
−1.

The general analytic description for receiver signal processing found in [1] ex-

presses the receiver design in terms of continuous time. This conveys the receiver

process, but is not sufficient for purposes of this description. Because the received

signal is sampled, as well as all software processes in the research reported in this docu-

ment, are executed in discrete time, future equations will be expressed in a framework

using discrete time notation.

Given the real-valued or complex-valued signal r[n] (so r[n] ∈ {R,C}, again

depending on how the received signal is sampled), r[n] can now be expressed as

follows for r[n] ∈ R:

r[n] =

M [n]∑
m=0

αm
√
CD(nTs − τm)x(nTs − τm) cos (2π (fIF + fDm)nTs + φm)

+η(nTs) (2.18)

where M [n] is the number of multipath rays (which does not including the LOS

ray) present at discrete-time index n. By doing this, the implicit assumption in the

continuous-time equations that there is a fixed number of multipath rays for all values
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of t is relieved. The above equation for r[n] ∈ C can now be expressed as follows:

r[n] =

M [n]∑
m=0

αm
√
CD(nTs − τm)x(nTs − τm) cos (2π (fIF + fDm)nTs + φm)

+j

M [n]∑
m=0

αm
√
CD(nTs − τm)x(nTs − τm) sin (2π (fIF + fDm)nTs + φm)

+ηi(nTs) + jηq(nTs) (2.19)

The equation for r[n] ∈ C can be further simplified as follows, using Euler’s

relationship [8]:

r[n] =

M [n]∑
m=0

αm
√
CD(nTs − τm)x(nTs − τm) exp (j (2π (fIF + fDm)nTs + φm))

+ηi(nTs) + jηq(nTs) (2.20)

where exp (x) denotes the exponential function ex. This equation serves as the basic

modeling equation upon which multipath parameterization efforts are based. It should

be noted that this development does not account for errors in downconversion to an

intermediate frequency or for errors in the timing of sampling (such as an erroneous

offset in frequency being generated, for jitter, or similar effects). When applying these

models for instrumentation receivers, the assumption that these errors are not present

in received data may perhaps be made, though this is generally not the case.

2.3.2 Obtaining Measurements for Position Computation. There are two

functions that are performed in what is defined here as a simple GNSS receiver—

acquisition and tracking. The first function, acquisition, involves the detection and

coarse parameter estimation of satellite radionavigation signals. The coarse parameter

estimation is performed to obtain rough values for the Doppler frequency and the

arrival time of the leading edge of the first code chip (referred to as code phase) [1].

This is done to initiate synchronization of the reference signals in the tracking loop

(both in terms of code phase and carrier phase). Upon completion of acquisition, the
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receiver should have available for tracking a set of PRN numbers, with associated

code phase and Doppler frequency for each PRN. Acquisition typically involves use

of the short-time Fourier transform (STFT), referred to in GNSS literature as the

search space or search grid, and is discussed in detail in section 3.3.5.

Tracking involves the operation of two feedback loops that behave symbiotically,

the phase tracking loop and the code tracking loop [1]. The phase tracking loop is

referred to as a phase locked loop (PLL) that provides Doppler frequency information

for each PRN that is then used in the removal of the IF and Doppler frequency content

from the received signal [1]. The output of this removal is a signal consisting nominally

of C/A code chips, all of which are multiplied by the navigation data message bit value

(either +1 or -1). This frequency “wipeoff” from the signal is required in order to

conduct C/A code tracking. This process is no different from the PLL process that

can be found in a typical digital communications receiver [2] [3]. The code tracking

loop is used to refine initial code phase estimates and track changes in code phase over

time [1]. This is done with a delay lock loop (DLL) by aligning a replica of the PRN

chip sequence transmitted by the satellite with the received signal. This will yield

code phase estimates which are used to eventually compute a pseudorange. Though

not required to perform the simulations outlined in Chapter III, the functionality of

the code tracking loop may be applied in order to divide received signals into buffered

segments of duration equal to the integration period. Divisions between segments

are placed at points in received data files where the last chip in the C/A-coded PRN

sequence ends and the sequence begins to repeat with the first sequence. The code

tracking loop provides this information, so received signals can be pre-processed using

a GPS software receiver configuration in order to obtain information regarding the

start and end times of PRN sequence frames in data files. This process can be

found in a digital communications receiver as well [2] [3]. The difference between the

DLL in GNSS receivers is that the PRN code sequence timing information is used

in subsequent position computations. In both digital communications receivers and

in GNSS receivers, the DLL is used to obtain bit values (for digital communications,
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these outputs simply constitute data, whereas this is the navigation data message in

particular in a GNSS receiver).

For every PRN that is visible to the receiver, a tracking loop is employed to

output code phase and carrier phase measurements. The code phase measurements

from each PRN are used to compute pseudorange measurements for each respective

PRN. Given that the received signal contains satellite position data and clock offset

information, satellite positions and approximations of the distance between the satel-

lite and the receive antenna can then be made available. Computations can then be

performed to eventually obtain position coordinates for the receive antenna [1]. This

is how simple GNSS systems provide position information to users.

2.4 Multipath Propagation and Its Effects on GNSS Signals

GNSS systems, such as GPS, Galileo, GLONASS, and Compass, make use of

an RF channel to communicate information from the transmitting satellite to the

receiving user. This information comes in the form of the navigation data message, as

well as the relationship in timing of the RF carrier and PRN code signals onboard the

GPS transmission. Multipath is typically a major source of error in modern GNSS

systems [9]. This dissertation presents research into the modeling of the effects of

the local environment surrounding a receive antenna on GPS L1 C/A-coded signals.

Among these effects are the addition of white Gaussian noise, the loss of signal power

due to propagation of the GPS signal through a medium, and multipath propaga-

tion. There is a great deal of literature available that outlines multipath propagation

research. Research areas include addressing multipath from the perspective of elec-

tromagnetic propagation, from the perspective of general wireless communications

theory, and from the perspective of radionavigation signals (specifically GNSS sig-

nals). This section will touch on these perspectives, but will emphasize the theory

behind multipath propagation from the perspective of GNSS signals. This section is

presented to provide the reader with an understanding of the theory behind multipath

propagation phenomenology.
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There is a large body of research and information regarding the physics behind

multipath phenomenology, to include work specifically addressing the electromagnetic

(EM) phenomenology of GPS signals in a multipath environment. An example of

this can be found in [10], where electromagnetic wave propagation models are used

to construct a physics-based, rather than statistics-based, model of GPS multipath.

While this approach provides powerful insight into what might be expected in some

GNSS multipath scenarios, the modeling of multipath propagation using physics-

based findings is not in the scope of this research. Other literature where a physics-

based, rather than probabilistic, model is used in the context of multipath can be

found [11] - [13].

To provide background in multipath phenomenology, the issue will be addressed

from two perspectives. The first is from the perspective of generalized wireless com-

munications theory in Section 2.4.1. The second is from the perspective of GNSS

signals in Section 2.4.2.

2.4.1 Multipath in General Wireless Communications Theory. In Section

2.2.3, an analytic model for received GPS signals in the presence of a multipath

environment is presented. This model makes use of the general linear channel models

for received signals bearing the impact from multipath interference found in wireless

communications literature [2] [3]. At first, this may seem inappropriate, as the impact

of multipath on a cellular telephone transmission may be different from the impact

on a received GPS signal transmission. However, the physical phenomenology is

the same, so the propagation models and equations used to describe the effects of

multipath on a wireless communications signal will describe multipath in a satellite

radionavigation channel. The big difference is that, in radionavigation, the timing

of arrival of waveforms at the receive antenna is of critical consequence, whereas in

wireless communication, the recovery of data bit values is of critical consequence.

Given the commonality of propagation effects on wireless communications ver-

sus radionavigation signals, the general wireless communications channel model will
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first be considered before addressing literature on multipath in GNSS. When an RF

signal is broadcast, the signal is exposed to propagation effects and interference from

other transmitters [14]. There are also multiplicative noise sources that are generally

present, from reflections, absorption, scattering, and diffraction. These multiplicative

sources are generally subdivided into three categories: path loss, slow fading (shadow-

ing), and fast fading (multipath) [14]. Path loss is the attenuation of a signal through

a channel due to the dispersion of RF energy.

The wireless channel is presented as a time-varying linear filter described by a

time-varying impulse response h(τ ; t), where h(τ ; t) is the response of the channel at

time t due to an impulse applied at time t − τ and where τ denotes the delay [2].

Signals transmitted via an aperture that are then received via a second geographi-

cally separated aperture will most likely arrive at the receiver aperture after traveling

several different paths. Signals arriving after traveling through these different paths

are referred to as multipath signals. For each of these multipath signals, there is a

separate carrier-phase offset that can add or subtract (constructively or destructively,

respectively) from the direct path, upon arriving at the receive antenna. This is

called fading [2]. The time-varying model can be used to describe a channel impacted

by multipath. In wireless communications theory, the time-varying communications

channel exhibiting multipath is generally described stochastically [2].

When the distance between the transmit and receive antenna is changing over

time, a Doppler frequency shift occurs, and the rate of change in distance between

antennas corresponds to the size of frequency offset [2]. Since GNSS satellites are

always moving relative to even a terrestrial user fixed in position relative to the earth,

the Doppler shift must be continuously considered. This is the case for both the

direct path signal and multipath signals. This adds to the number of terms that

must be considered when examining multipath signals. Multipath is now expressed

using a time-varying delay term, a time-varying amplitude term, and a time-varying

frequency term [2].
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There are two characteristics of a radio channel associated with small-scale fad-

ing that influence the structure of received signals [3]. Multipath signals arrive at the

receive antenna after traveling through varying paths, with different associated delays

in arrival at the receive antenna (called a time dispersive channel), but the channel

medium itself changes over time, so the impulse response of the channel itself is time

varying [2]. This time variance in the channel itself is due to several factors, includ-

ing (but not limited to) changes in precipitation, humidity, temperature, and solar

radiation. These changes are nearly impossible to predict, leading us to characterize

these channels using stochastic processes rather than deterministic models. While the

model expressed in (2.20) is deterministic in nature, and is of a closed form, it will

be seen in Chapter III that the means by which parameters for (2.20) are obtained is

stochastic in nature.

Several concepts associated with multipath in general wireless communications

theory are now presented. There are different classifications of multipath propagation

tailored towards GNSS signal simulation presented in [15]. However, the following

sections present the classifications and definitions for multipath propagation that will

be used in this dissertation, as adapted from [14].

2.4.1.1 Tapped delay line channel model. One way to model a time-

variant channel is through the tapped delay line channel model [2]. This model is made

up of uniformly spaced taps, such as taps in a discrete-time filter. The spacing between

taps is equal to the inverse of the signal bandwidth W . Channel tap coefficients cn(t)

are mutually uncorrelated, and expressed as follows [2]:

cn(t) ≡ αn(t)ejφn(t) (2.21)

The length of the delay line is called the multipath spread Tm, and corresponds to

the amount of time dispersion in the channel [2], and is equal to L/W , where L

is the maximum number of possible multipath signals. A mathematical expression

describing the received signal r(t) output from the time-varying tapped delay line
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channel model is as follows [2]:

r(t) =

L(t)∑
l=1

[
s(t)

cl(t)

W l−1

]
+ η(t) (2.22)

where l is the tap number, L(t) is the total number of taps at time t, s(t) is the

transmitted signal at time t, cl(t) is the value of tap l at time t, and η(t) is the value

of the additive white Gaussian noise at time t. The tapped delay line model is used

in digital communications theory to describe channels.

2.4.1.2 Fading. Fading is described as signals arriving at a received

antenna after traveling several different paths [14]. Fading will yield increases and

decreases in the power level of the received signal due to constructive and destructive

interference, respectively. Fast fading is on the scale of half of a wavelength [14]. As an

obstruction increases in size, so too does the effect of the obstruction. Tap coefficients

in the tapped-delay line model can be modeled as complex-valued Gaussian random

processes. Tap coefficients c(t) can be expressed as follows [2]:

cl(t) = clr(t) + jcli(t) = αl(t)e
jφl(t) (2.23)

where clr(t) and cli(t) are real-valued Gaussian random processes. These processes

are generally assumed to be stationary and statistically independent. If cr(t) and ci(t)

are zero-mean Gaussian signals, the amplitude α(t) is described using the Rayleigh

probability distribution [2]. φ(t) is then uniformly distributed over [0, 2π). This

yields the Rayleigh fading channel, which is modeled using the following probability

distribution function (PDF) [2]:

f(α) =


α
σ2 e
−α2/2σ2

, α ≥ 0

0, α < 0

(2.24)

f(n) =
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where σ2 = E(c2
r) = E(c2

i ). Rayleigh fading, a type of small-scale fading, takes

place if there is no dominant LOS, or direct, path between the transmitter and receiver

antennas (put simply, the LOS signal path is blocked) [3]:

If one or both of the processes cr(t) and ci(t) are not of zero mean, then α(t) is

modeled using the Rician PDF [2]. The phase φ(t) will have a nonzero mean as well.

This fading channel is then called Rician. The PDF of α is as follows [2]:

f(α) =
α

σ2
e−(α2+s2)/2σ2

I0

(sα
σ2

)
, α ≥ 0 (2.25)

where s2 is the power of the received signal components that do not fade, and σ2 =

VAR(cr) = VAR(ci).

2.4.1.3 Shadowing. Signals are impacted by shadowing when there are

large obstructions between the transmitter and receiver [2]. Shadowing is a large-scale

form of fading, where the direct path signal is attenuated [3], yielding a larger path loss

than that observed in open space signals. Terrain contours (vegetation, buildings, etc.)

between the transmitter and receiver yield shadowing. Shadowing varies significantly

over distances of hundreds of meters [14]. The received signal power varies with

the nature of obstructions between the transmit and receive antenna. Shadowing

decreases as the elevation angle of the satellite relative to the horizon increases [16].

Shadowing is modeled as a multiplicative, slowly time-varying random process r(t) as

follows [2]:

r(t) = A0g(t)s(t) (2.26)

where A0 is the mean path loss, s(t) is the transmitted signal, and g(t) is a random

process used to represent the shadowing effect. The shadowing process can be modeled

as a log-normal distribution (i.e., a distribution in which the signal expressed in
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decibels has a normal distribution), as seen in the following equation [2]:

f(g) =


1√

(2πσ2g)
e−(ln (g)−µ)2/2σ2

, g ≥ 0

0, g < 0

(2.27)

A mean path loss as a function of distance is estimated, and then the path loss

is varied with a log-normal distribution about the mean [3].

2.4.1.4 Reflection, Diffraction, and Scattering. Small-scale and large-

scale fading descriptions making use of Rician, Rayleigh, or log-normal PDFs are

means by which the effects of propagation can be modeled. However, no insight into

what in particular creates the multipath scenario is offered with these models alone.

According to Sklar, there are three basic categories of phenomena that affect signal

propagation in mobile communications: reflection, diffraction, and scattering [3].

Reflection occurs when a wave impinges upon a smooth surface [3]. This smooth

surface must be larger in dimension than the wavelength of the RF signal. This is

referred to as specular multipath [17]. If a large, smooth reflector is indeed present in

a position adjacent to the direct line of sight of the direct ray, the resulting specular

signal can be modeled with the following equation [17]:

r(t) = As(t− τ)ejφ + αAs(t− τ − τm)ejφm + n(t) (2.28)

where s(t) is the transmitted signal, A is the amplitude of the received direct path

signal, α is the relative received multipath signal amplitude, τm is the delay of the

reflected signal relative to the direct signal, and n(t) is the noise term. However, true

specular multipath rarely occurs [17]. Surfaces should only be considered smooth

enough to induce specular reflections if the surface phase differences are less than π/8

radians [14].
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Shadowing is caused by diffraction [3]. Diffraction occurs when the signal path

between the transmitter and receiver is at least partially obstructed by a body of

different density than the open air environment. This body must have dimensions

that are large relative to the signal wavelength. Secondary waves are formed behind

the obstruction. This phenomenon makes it possible for RF radiation to travel from

the transmitter to the receiver without a direct line of sight between the two.

Scattering occurs when RF radiation impacts rough surfaces or surfaces whose

dimensions are small relative to the wavelength of the signal [3]. The edges of these

surfaces, called scatterers, cause energy to be dispersed in essentially random direc-

tions. Typical urban obstructions that cause scattering include signage, lights, and

vegetation.

2.4.2 Multipath in GNSS Signals. Multipath distorts the modulation and

carrier phase of transmitted GNSS signals, which leads to a degradation in positioning

accuracy [9]. Measurement errors resulting from multipath depend primarily upon the

strength of the reflected signal relative to the direct signal and the delay between the

direct and reflected signals, and affect both code- and carrier-phase measurements

taken in a GNSS receiver [1]. Typical pseudorange measurement errors vary from

one to five meters depending on the number of scatterers and reflectors in the envi-

ronment [1]. Literature provides in-depth information on pseudorange measurement

performance in the presence of multipath [18]. Typically, carrier-phase multipath

errors are two orders of magnitude smaller than code-phase multipath errors.

As the elevation angle of a transmitting satellite gets smaller, the received signal

power decreases while the multipath interference power increases [1]. Because of this,

measurements from satellites that are low in elevation are often neglected altogether.

The case exists when a multipath signal can arrive at approximately the same time

and at the opposite phase from the LOS signal. This has the effect of reducing the

signal to noise ratio [19].
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To provide context for the discussion of previous research into GNSS multipath

phenomenology that can be found in literature, it is important to understand the

problem that is considered in this research. The motivation for this work is to progress

towards the ability to generate models with which simulators can be constructed for

the generation of sample GNSS data. This data should resemble received GNSS data

as closely as possible, while still retaining the ability to express parametrically the

models used to generate this data. In short, this research is intended to progress

toward development of a hybrid system that offers both the advantages of a recording

and playback system and a system that uses an analytic model to generate data. There

are several GNSS recording and playback systems that are available commercially

today [20]. However, a system that simply records a GNSS signal and plays the

signal back does not additionally offer estimates for various propagation effects in the

channel that could be used in modeling and mitigation. To construct a hybrid system

making use of the findings presented in this dissertation, it is important to have an

understanding of the previous work that has be conducted in the areas of GNSS

multipath estimation and GNSS multipath modeling. There is a difference between

the two that may be worth clarifying. Multipath estimation is the processing of

real-world data to obtain statistics for describing the multipath in the environment.

Multipath modeling is analytically describing what is expected to be observed in when

recording GNSS signals, using equations and parameters founded in electromagnetic

propagation and wireless communication theory. A recording and playback system

offer neither multipath estimation nor multipath models. A simulator that makes

use of multipath models may make use of some limited set of multipath estimates

that have been obtained previously to the development of the model. The research

reported in this dissertation considers a scenario where GPS data is recorded, signal

processing techniques are applied to obtain estimates for various parameters used

in describing multipath phenomenology, models making use of these estimates are

constructed, and a simulator that makes use of these models in order to generate an

infinite amount of data is finally constructed. This process of recording, estimating,
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modeling, and simulation of GNSS multipath in a comprehensive system has yet to

be found in GNSS literature on the subject.

The scope of the background content for GPS multipath will first be presented

as follows:

• GPS multipath in particular will be considered. There is literature in the area of

multi-constellation GNSS radionavigation in the presence of multipath [21] [22],

but multi-constellation radionavigation will not be considered in the research

presented in this dissertation. There is also literature that specifically addresses

the signals associated with constellations other than GPS [23] [24]. There are

similarities in phenomenology between GPS signals and signals from other re-

alized or notional global navigation constellations (such as Galileo), but there

are also differences. Galileo in particular uses a binary offset carrier modulation

within its civil service signal structure. This requires specific considerations be

made to accommodate the estimation of the multipath channel [25].

• Multipath will only be considered in the context of signals that are received and

processed using a single receiver with a single antenna consisting of a single aper-

ture, that is generally assumed for discussions in this document to be isotropic.

There is a distinct body of research separate from the research in this disser-

tation that involves the study of multipath-laden signals obtained by receivers

making use of multiple apertures that permit techniques like beamforming to

take place [26] - [31].

• The estimation and modeling is considered at the pre-detected (intermediate

frequency sampled signal) level, rather than at the level involving carrier phase

or pseudorange measurements. There is literature available that considers mul-

tipath on pseudorange and carrier phase measurements, rather than at the level

of pre-detected signal samples [32] - [40].

• Only one GPS RF carrier frequency, L1, is considered in this research in the

estimation, modeling and simulation of GPS signals laden with multipath. This
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does not, however, preclude the findings from being applied to other frequencies

or to multi-carrier GNSS signal processing techniques. Relative to the research

outlined in this dissertation, there is a dissimilar body of literature discussing

the simultaneous use of multiple carriers in the consideration of GPS signals in

the presence of multipath propagation [41].

Literature states that there are two broad categories of techniques by which

multipath is mitigated within GNSS receivers—techniques that do require that mul-

tipath be estimated and techniques that do not require multipath estimation [42] [43].

The algorithm used in this research is designed specifically to estimate parameters as-

sociated with multipath propagated signals received with in addition to a line of sight

GPS signal and noise.

There are several examples of multipath mitigation techniques that do not in-

volves the estimation of multipath [44] [45], such as the Narrow Correlator [46], the

Strobe Correlator [47], the Vision Correlator [48], and the use of a whitening filter

to remove correlated noise [49]. These examples all involves techniques that work to

mitigate multipath without any sort of effort to determine if multipath is present.

Other techniques that function similarly to these, but additionally acts to detect the

presence of multipath (without estimating multipath ray parameters) have also been

developed [50] [51]. A technique that works to detect multipath through the use of sig-

nal to noise ratio data obtained from the received signal has also been developed [52].

A further extension of this approach is a category of techniques that estimate error

due to multipath in order to remove the impact of the error on measurements, without

actually estimating multipath rays parameters (e.g., [53]).

Techniques that estimate multipath explicitly in the act of mitigating multipath

are the Multipath Estimating Delay Lock Loop (MEDLL) [54] [55], Multipath Mit-

igation Technology (MMT) [56], and application of the SAGE algorithm [57]. Each

of these algorithms go so far as to explicitly estimate parameter values for received

GNSS signal rays. Parameters that are assigned values are the ray amplitude, the
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ray propagation delay relative to the line of sight ray, and the carrier phase for each

ray. Another technique where the amplitude and propagation delay are estimated

is the Reference Correlation Multipath Mitigation (RCMPM) [58]. The use of par-

ticle filters has also been employed in the detection of the presence and estimation

of parameters for multipath [59] - [62]. Frequency-domain techniques (making use

of cepstral analysis and direct inverse fast Fourier transforms to obtain a channel

impulse response) [63] [64] and least squares-based techniques [65] [66] for estimating

multipath parameters have been developed.

2.4.2.1 Code- and Carrier-phase Multipath Ray Model. Braasch devel-

ops closed form equations for code- and carrier-phase multipath errors resulting from

a single multipath ray entering a stationary receiver [9]. These equations can obvi-

ously be expanded to include multiple multipath rays in an ensemble. A broadcast

GPS signal s1(t) can be expressed as follows [9]:

s1(t) = A cos [ω0t+ P (t)π/2] (2.29)

where A is the magnitude of the received waveform, ω0 is the frequency of the received

signal (which includes the carrier frequency and any Doppler shift), and P (t) is the

PRN code chip value (+1 or -1).

Braasch asserts that there are four parameters that characterize multipath: am-

plitude of the reflected signal relative to the LOS signal, time delay of the reflected

signal relative to the direct signal, phase of the relative signal relative to the direct

signal, and rate of change of the relative phase between the reflected and direct sig-

nal [9]. All four of these parameters are relative to the direct signal. In a stable

multipath scenario, which is assumed in further equations, it is assumed that the

relative phase rate of change is equal to zero. The relative phase of the multipath is a

function of both the relative time delay and the reflection coefficient of the reflecting

object.
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A received signal in a stable multipath scenario composed of the LOS signal

and a single multipath ray is expressed as follows [9]:

s1m(t) = −Ap(t) sin (ω0t)− αAp(t+ δ) sin (ω0t+ θm) (2.30)

where α is the amplitude of the multipath signal relative to the direct signal, δ is

the time delay of the multipath signal relative to the direct signal (which is always

negative in the convention of the above equation), and θm is the multipath phase

relative to the direct signal.

Another similar model that is tailored specifically for GPS is posed in [67], where

the received signal consists of the direct signal and M − 1 multipath signals. This

equation is as follows [67]:

x(t) =
M∑
i=1

Ai(t)D (t− τi(t))C (t− τi(t)) cos (2π(f0 + vi(t))t+ ψi(t)) + n(t) (2.31)

where Ai(t) is the amplitude of the ith multipath component, D is the amplitude of

the navigation message, C is the amplitude of the PRN sequence code value, τ is the

multipath error, vi is the frequency change, ψi is the phase change, and n(t) is noise.

With the exception of the variables used and a variation in the scaling (one variable

versus two variables) of the peak amplitude of each multipath ray, the model in (2.31)

is effectively the same as that expressed earlier in (2.10).

Braasch compares the closed form equations of a direct signal with the closed

form equations of a direct signal summed with a multipath ray signal. These com-

parisons take place as both signals (the direct signal by itself, and the direct signal

summed with the multipath ray signal) are processed in the forward processing (from

carrier and Doppler removal to discriminator) of a coherent delay lock discrimina-

tor [9]. This same style of comparison takes place for the case of a noncoherent

DLL discriminator [9]. Braasch also presents closed form equations of a combined

direct and multipath ray signal as the signal is forward-processed in a carrier PLL [9].
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Braasch asserts that, in cases where the absolute value of the DLL tracking error

is greater than or equal to one spreading code chip, the DLL tracking loop actually

tracks the multipath signal, rather than the direct signal [9].

Since carrier phase errors cannot exceed 90◦ when the single ray multipath signal

strength is less than the direct path signal strength, the impact on carrier phase error

is no more than 4.8 cm for GPS L1 [9]. This can be verified analytically with the

following equation for the multipath error in the carrier phase measurement δφ [1]:

δφ = arctan

(
sin (∆φ)

α−1 + cos (∆φ)

)
(2.32)

If α < 1, δφ = 90◦ in the worst case.

When the Doppler shifts between the multipath signals arriving at different

directions from the LOS signal contrast well enough from the Doppler shift exhibited

in the LOS signal, the received multipath signals become decorrelated from the LOS

signal path, so they can be neglected [19]. This is because these multipath signals

do not correlate well with the receiver reference signal that is tracking the received

direct signal.

Code phase errors can be more than 100 m, however, because of the effects

of a single multipath ray when processing GPS L1 C/A-coded signals. The error

envelope for the noncoherent DLL is the same as that for the coherent DLL [9].

When the indirect ray path amplitude is small compared to the direct ray path, the

error due to multipath varies sinusoidally, but when the indirect ray path amplitude

is large, sharp discontinuities in error may be present [9]. Pseudorange errors are at

their highest when carrier-phase measurement errors are at their smallest, and vice

versa [9]. The specific reason why code-phase measurement errors are pronounced in

a multipath environment is because the DLL discriminator takes measurements from

secondary peaks in the correlation process that distort the early and late correlator

measurements. Because of this, the correlator will not center on the true arrival time

of the direct ray [1] [67]. The reflected wave is asserted generally to arrive after the
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direct ray, and creates a delay in the correlation peak. The relative delay of the

multipath relative to the signal from the direct path will act to determine the effect

of the multipath signal. If the delay is large relative to the direct path signal, then the

correlation process will act to suppress the power of the multipath signal and reduce

its impact [1]. If the delay is greater than twice the chip time, the multipath signal

is relatively easily resolved and its effect managed [19]. Severe shadowing may lead

to the receiver tracking the multipath signal rather than the direct path signal. This

obviously leads to large ranging errors.

2.4.2.2 Efforts in Modeling the GNSS Channel. There are a number

of places where research is being conducted into GNSS modeling, estimation, and mit-

igation (as it relates to multipath estimation), as referenced earlier in this chapter.

Research in two such places, the German Aerospace Center (DLR) and the Univer-

sity of Calgary, is discussed further. Modeling work performed at these locations is

presented here because the efforts outlined by DLR and Calgary align most closely

with the research presented in this dissertation. DLR has placed an emphasis on

outdoor urban, suburban, and rural land mobile multipath, leveraging the results of

a measurement campaign undertaken in the last 10 years. Calgary is studying the

GNSS channel in both outdoor terrestrial and indoor settings. DLR’s work on land

mobile modeling and Calgary’s work in indoor modeling will be discussed.

DLR has undertaken an extensive effort to model the GNSS channel in both

rural and urban environments. This is to develop techniques to mitigate the local

environmental effects observed in the GNSS channel, and construct a GNSS signal

simulator that incorporates some of their findings into the simulator. DLR research

has led to the construction of a model that characterizes the time-varying channel

between a satellite and a mobile user [16]. This is done by surveying the channel

and then attempting to fit parameters to the channel. Information that can be used

directly in modeling the GPS channel is not necessarily provided in [16], as the L1

channel is more than 200 MHz separated from the frequency of interest in the DLR
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channel survey campaign. The methodology used in [16], however, does provide a

framework within which results could be derived. To perform this modeling, a mea-

surement campaign was conducted to parameterize channel characteristics which can

be used in presenting a model. Measurements were performed using a carrier fre-

quency of 1820 MHz, a transmitter onboard an aircraft simulating a satellite, and a

mobile receiver. The pseudonoise bit sequence operated at a bandwidth of 30 MHz,

at a sampling rate yielding 15.6 impulse responses per second. It was found that

multipath echoes with small delays (less than 600 nsec) appear, and are typically at-

tenuated by 10-30 dB. Furthermore, it was found that environments differ because of

the influence of shadowing, as well as the number and attenuation of echoes. Further-

more, the power of the echoes decreases exponentially versus the delay. The number

of echoes with long delays, as it turns out, is small compared with the number of

echoes with short delays. Channel behavior in [16] is described through use of the fol-

lowing variables: the time-delay system function h(t, τ), the echo delay τ , and time t.

Furthermore, the transfer function of the channel CTF(t, f) = FFTτ (h(t, τ)) is used

to describe the channel properties in the frequency domain. With CTF the frequency

selectivity of the channel can be directly observed. In the ideal channel, where the

environment is open, the CTF is flat over the 30 MHz system bandwidth. This is not

generally realistic, however. In a more general environment, the CTF depends mainly

on shadowing of the LOS signal. Echoes do not contribute very much to the signal

power in LOS conditions. The suburban environment actually more closely resembles

the ideal channel than it does the rural environment with trees increasing the amount

of shadowing. The urban environment is more frequency selective. It is asserted that

this is due to the echo reflections from traffic and buildings. It is uncovered in [16]

that there is a spectral correlation of 5 Hz. This leads to the assertion that the main

multipath echoes are delayed by 200 nsec (thus an indirect path length 60 m longer

than the direct path). The CTF is attenuated by 10 to 20 dB in a shadowed environ-

ment, either rural or urban. The channel becomes frequency selective at a distance

from the carrier frequency of 3 to 5 MHz.
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In research conducted by DLR, a channel model was developed that is founded

on an interpretation of the physical environment. This model assumes several com-

ponents [16]:

• Different reflectors Rk yield echoes with a round-trip detour ∆sk and a delay

∆τk = ∆sk/c0. These parameters are with respect to the propagation delay of

an undisturbed signal.

• The reflected components of the transmitted signal undergo superposition (lin-

ear re-composition) at the receiver antenna.

• Two echoes k and l, each with different delays, can be resolved when the dif-

ference of the delay is larger than the response time of the receiver system

bandwidth, so |∆τk −∆τl| > 1/B.

• The received signal changes when the physical geometry changes.

• Signals with different delays are uncorrelated, thus the channel can be treated

as wide-sense stationary with uncorrelated scatterers (WSSUS). The following

items outline the constraints placed on the model, once the channel is assumed

to be WSSUS [16]:

– The channel can be modeled as a multi-tap delay line filter, and the channel

can be modeled with a discrete-time impulse response, with complex-valued

echoes.

– Phases are uniformly distributed throughout the unit circle.

– The channel impulse response consists of three elements: the direct path,

the near-echo region, and the far-echo region. The direct path model is

dependent on whether or not the signal is subject to shadowing. In LOS

conditions, a Rician distribution is used, whereas in shadowed conditions,

a Rayleigh distribution with a log-normal-distributed mean power is used.

In the near-echo region, the amplitude of the echoes will vary according
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to a Rayleigh distribution, while the number of near echoes is Poisson-

distributed. The delay distribution of the near echoes follows the exponen-

tial distribution. In the region of far echoes, the number of far echoes is

Poisson distributed, and the amplitudes follow a Rayleigh distribution.

Further findings of the DLR measurement campaign are outlined in [68] - [72].

In [68] to [70], findings resulting from the measurement campaign are outlined. In this

measurement campaign, a Zeppelin was used as the transmitting platform to simulate

a GNSS satellite. This Zeppelin transmitted known signals with carrier frequencies

between 1460 and 1560 MHz. A van was equipped with receiver hardware (to include

a commercial wireless network analyzer to perform measurements), the Zeppelin and

van were moved through various environments, and the data was processed to uncover

the impact of the local environment on the signal. In [68] and [69] in particular, results

of measurements performed by people for pedestrian-level measurements are provided

as well. Initial findings regarding delays in signal reception at various elevation an-

gles of the Zeppelin relative to the horizon are provided in [68]. Approximate signal

delays between 4 and 10 µsec were experienced at elevation angles from 80◦ down

to 10◦. Further findings are presented in [69], after performing a statistical analysis

of the data from the measurement campaign. This statistical analysis makes use of

the Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

algorithm, which enables data analysis at a higher resolution that what is available

in [68]. A significant discovery is that interference from a transmitter at 80◦ has a

higher impact in the urban environment than transmissions from lower elevations. It

is asserted in [68] that this results from more powerful reflected signals radiating down

to the receive antenna after being reflected off of buildings (possible specular reflec-

tion). These reflections do not exhibit as a large a delay (relative to the direct path

signal) as the multipath observed when the transmitter is at a lower elevation, which

will impact the GNSS code delay loop accumulation and discrimination functions to

a greater degree than signals that are delayed longer. Findings in [70] include the

impact of edges, corners, and exterior walls of buildings, trees, and lampposts over
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time on the signal. These findings were then compared with previously existing prop-

agation models. These results were then used to construct a simulated environment,

which in turn yields simulated received signals [71]. The environment makes use of

pseudoranges to construct this simulated environment to account for data collection

vehicle dynamics. The model used by DLR in construction of the signal simulator

considers both multipath effects and receiver movement. The fundamental measure-

ment obtained in the campaign is the channel impulse response h(∆τ, t) relative to

the LOS signal transmitted by the Zeppelin. h(∆τ, t) is as follows [71]:

h(∆τ, t) =
N∑
i=0

ar,i(t)e
−jφr,i(t)δ (∆τ −∆τi(t)) (2.33)

where there are N discrete multipath signal echoes received and φr,i(t) is the phase

variation of the multipath signal (which depends on the receiver movement and the

variations in the multipath environment over time). The attenuation of the multipath

echo relative to the direct signal path ar,i(t) is equal to [71]:

ar,i(t) =
ai(t)

a0(t)
(2.34)

The relative excess path delay ∆τi(t) is as follows [71]:

∆τi(t) = τi(t)− τ0(t) (2.35)

For the work presented in [71], an impulse response calculation rate of 1 kHz is used,

allowing a maximum mobile data collection vehicle speed of 100 m/s with respect

to stationary reflectors. The start and stop time of the discrete number of echoes is

recognized automatically using the output of the ESPRIT data processing algorithm

[71]. Therefore, the number of echoes N is determined through this process as well

as the delay range and amplitude of the echo. The maximum number of echoes used

in the simulation in [71] is approximately 80, as echoes would be considered if they

exhibit a power greater than 100 dB less than the power of the LOS signal.
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The environment was constructed probabilistically using what would be ex-

pected for the population of various scatterers and reflectors in the environment.

This model can then be used to simulate what would be expected in a given en-

vironment, leveraging electromagnetic propagation models to artificially generate a

received GNSS signal. The findings uncovered during the measurement campaign

are extended in [72] by providing likelihood distributions of reflections over time and

space, from the perspective of pedestrians in city or suburban streets. These likeli-

hood distributions are offered in contrast to the use of ray tracing algorithms typically

found in literature on multipath propagation (e.g., [73]).

The DLR simulation was expanded further by integrating a particle filter-based

algorithm for tracking the delay resulting from multipath, among other multipath

estimation techniques [74]. Discussion of multipath in both the land mobile environ-

ment and the aeronautical environment is offered in [71]. The use of the particle filter

provides an estimate that can then be used to mitigate multipath.

While the urban environment modeled by DLR is emphasized in the research

reported in this dissertation, indoor navigation is another scenario to be considered

in multipath modeling. Researchers at the University of Calgary are actively con-

sidering the difficulties in indoor navigation using GNSS signals. Part of this effort

involves characterizing indoor multipath in both time and space, given various en-

vironments [75]. Several points are made in [75] when describing the impact of the

indoor environment on GNSS receiver signal processing. First, long coherent integra-

tion times are used to counter signal attenuation and fading. Second, antenna motion

during these longer coherent integration times decorrelate the received GNSS signal,

which will reduce the gain offered by the coherent integration. On the other hand,

there is a diversity gain offered through antenna motion, which improves signal detec-

tion. Given these conditions, [75] describes the process and results of measurements

of correlation coefficients for static and moving antennas in various indoor multipath

fading channels. Particular outcomes in this research are that in a structure such as a

wooden house, indoor multipath appears to be Rice distributed, since there is a sub-
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stantial line of sight GNSS signal available, depending on the transmitting satellite

position relative to the indoor structure [75]. For a more substantial structure, such

as a spacious lab area inside a concrete building, the Rayleigh distribution appears

to more appropriately describe the multipath environment, since there is a negligible

line of sight signal present [75]. Put differently, the correlation coefficient is stronger

for a wooden house than for a concrete laboratory or workshop structure.

2.5 GNSS Signal Receiver Processing for High-Fidelity Simulation

2.5.1 Simulated Annealing. Simulated annealing (SAN) is one of several

pattern classification techniques that are in widespread use to solve various stochastic

search and optimization problems. In the context of the research presented in this

dissertation, SAN is used in the algorithm outlined in Chapter III for obtaining pa-

rameters instances of multipath propagated signals. Stochastic search methods are

designed to find parameters for constructing complicated models involving random

behavior, without exhaustively searching through a solution space. Stochastic search

methods are sometimes inspired by physical and biological processes (such as SAN

and genetic algorithms, respectively). Unlike classification methods such as the use of

linear discriminant functions or neural networks, stochastic methods such as SAN and

evolutionary methods can be used in problems where modeling would be extremely

complicated, as in the case of models best expressed with high dimensionality [76].

Another critical distinction between SAN and other stochastic search techniques is

the willingness built within the SAN algorithm to give up lower energy states pre-

sented by local minima in temporary favor of higher energy states [77]. Many other

optimization techniques behave greedily, as defined in optimization literature [76].

Greedy techniques always pursue lower energy states. This may lead to a rapid de-

crease in energy state, but may also lead to the descent into a local minimum that

is not the global minimum. Because SAN will temporarily surrender lower energy

states in favor of higher energy states, the quick gain of a rapid decrease into a local

minimum is avoided. Because this is the case, SAN will typically require significant
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computational effort in order to obtain convergence upon a global minimum. The

tradeoff is the greater assurance of achieving convergence upon the global minimum

than in gradient search algorithms. In SAN, local minima are avoided by controlling

the magnitude reduction of the random perturbations used in performing the scouring

of the search space posed by the parameters being considered [77]. The SAN algo-

rithm is designed to travel through the local minima presented by a search space in

search of a global minimum. An analogy to the simulated annealing process that may

be useful to the layperson [78] is this: the surface of a pie pan is dented, leaving an

uneven surface behind. A marble is then placed in the pie pan and the pan is shook

gently. The marble will travel from local minimum to local minimum. With enough

shaking of the pie pan, and the presence of a well-defined global minimum, the marble

will eventually descend into the global minimum. Over time, the vigor of the shaking

of the pie pan is reduced, so as to avoid disturbing the marble once it descends into

the global minimum. Duda uses a physical analogy to illustrate how stochastic search

works [76]. Given N physical magnets, each of which are indexed by i, and each of

which can have either its North (si = +1) or South (si = −1) pole facing up, the

function of the physical separation between magnets is wij, where j is the index of

a magnet not numbered i. Each pair of magnets has an interaction energy Eij. The

sum of all energies is E. This sum of energies is expressed as follows [76]:

E = −1

2

N∑
i,j=1
i 6=j

wijsisj (2.36)

The task in this process is to find the configuration of states of the magnets that is

most stable, therefore the configuration that has the lowest energy. It is readily obvi-

ous in this analogy that for large values of N , this problem would be very difficult to

solve through an exhaustive search, as would be the case for 1 trillion magnets, for ex-

ample. SAN provides a means by which this problem can be solved without requiring

an exhaustive search. Annealing is the physical process by which magnets or atoms

in an alloy reach a low-energy configuration. Heat is applied to the system (which
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increases the energy of the system), and then the temperature is gradually lowered,

so the system relaxes into a low-energy configuration. As the temperature lowers, the

probability of the system reaching an optimum configuration is increased [76]. There

is the possibility that a local, yet not global, minimum is reached (compared to a golf

hole in a golf course in [76]). The magnet analogy presented by Duda can be fur-

ther complicated in cases where the magnets are interconnected by weights, therefore

the energy associated with the magnet’s direction is dictated by the states of other

magnets as well as the factors previously mentioned [76].

To simulate annealing in the generalized stochastic search algorithm, the initial

states of the system are randomized [76]. A high initial control parameter, the tem-

perature T , is then chosen. A node i is then chosen at random, so its state si is equal

to +1 (using the magnet analogy). The system energy Ea in this configuration is then

calculated. The energy Eb for a new state si = −1 is then calculated. If Eb < Ea,

then this change in state is accepted. If, on the other hand, Eb > Ea, Eb is accepted

with a probability of e−∆Eab/T [76], where ∆Eab = Eb − Ea. In contrast to other

pattern classification algorithms, where the lower energy state is always accepted (as

in naive gradient descent), SAN requires that the higher energy state is sometimes

accepted. This acceptance of higher energy state is what allows the algorithm to

move out of unacceptable local minima that would falsely be declared an optimal

value. The process of selecting and testing states, referred to as polling, continues

for several iterations. The temperature parameter T is then lowered in value, and

polling is continued. Polling is continued for each node until each node has been

acted upon for several iterations. The temperature is lowered again, and the cycle

continues until T is near zero. If T is lowered slowly enough, then the system most

likely (but not certainly) will be in a low-energy state, which in the annealing analogy

means a global energy minimum. Note that the difference in energies between states

is what is considered in the algorithm. This means that only nodes connected to

the node being polled are considered. The nodes not connected to the polled node

remain in the same state, to be addressed later as the algorithm leaps from node to
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node. Duda provides a pseudocode algorithm that can be used in writing computer

code for the SAN algorithm [76]. Parameters that must be considered include the

starting temperature, the ending temperature, the rate of temperature decrease, and

the stopping criterion. The starting temperature, T (1) must be high enough that all

configurations have approximately the same probability (so T (1) must be higher than

the maximum energy difference shared between any configurations). The cooling rate

must be gradual, to avoid trapping the system in a suboptimal local minimum. The

final temperature must be low enough that there is very little chance that the system

could move out of a globally optimal state. The temperature decrease rate is typically

selected to be proportional, so the following equation would be used to express the

temperature cooling rate [76]:

T (k + 1) = cT (k) (2.37)

where 0 < c < 1. Duda states that typical value of c range from 0.8 to 0.99. This

parameter will dictate the rate at which the algorithm works, but SAN algorithms

are inherently slow to converge to a minimal solution.

Spall presents a variation on the description of the algorithm as well [77]. Duda’s

algorithm description is provided here to retain the notation used in the magnet

analogy.

No previous work in the area of SAN in the modeling of GNSS channels has

been uncovered. The following section outlines previous work in the area of SAN in

modeling wireless communications channels.

The structure of GNSS signals is no different than what might be found in a Code

Division Multiple Access (CDMA) or Frequency Division Multiplexed Binary Phase

Shift Keying (FDM-BPSK) digital signal used in a communications link. Therefore,

any work that has been performed in the past on the modeling or simulation of

these kinds of communications signals that makes use of SAN is applicable to the

research proposed here. There are several different publications that describe how
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SAN is used in wireless communications. The most prevalent use is in the area of

dynamic channel (or frequency band) assignment [79], proposed potentially as part of

a cognitive radio infrastructure. SAN has also been used in an algorithm designed to

estimate and track the channel state of a Rayleigh fading multipath channel [80]. This

work does not, however, make use of SAN in the determination of a optimal channel

description, but instead uses SAN in the computation of state space noise (the G

matrix in Maybeck’s state space notation [81]). While this use of SAN appears to be

novel, this does not make use of the SAN algorithm for the same particular problem

to be addressed in the research outlined in this dissertation. SAN has also been

used in previous work to train a hidden Markov model (making use of eight states)

used to model burst error sources in a wireless channel [82]. This differs from the

research proposed in this dissertation, in that there is no use of hidden Markov models

proposed in this dissertation. SAN has also been used in training a neural network

used to model fading multipath in a wireless communications channel [83]. Again,

this contrasts with the research proposed in this dissertation, in that there is no use

of a neural network proposed here. SAN has also been used in modeling a system in

generalized wireless sensor nodes [84]. This article, however, in intended to introduce

a parallelized approach to SAN that makes use of the sensor network only as a test

case with which to demonstrate the effectiveness of the algorithm. SAN has also been

used to optimize the beamforming algorithm in a Multiple-Input/Multiple-Output

(MIMO) communications channel [85]. Though [85] provides a good explanation of

the SAN algorithm, this literature does not directly apply to the research proposed

in this dissertation.

Literature is available that outlines the use of simulated annealing to refine

GNSS-based position estimates, using both carrier- and code-phase (pseudorange)

measurements [86] - [88].
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2.6 Expectation Maximization (EM) and the Space Alternating Gener-

alized Expectation (SAGE) Maximization Algorithms

This section outlines the theory behind the algorithm that most closely compares

with the SDPA algorithm developed for the research presented in this dissertation.

The most comparable algorithm is the SAGE algorithm. The theory behind the

Expectation Maximization (EM) algorithm for which SAGE provides a generalized

approximation is discussed in Section 2.6.1. The theory behind the SAGE algorithm

itself is discussed in Section 2.6.2. The implementation of the SAGE algorithm to

decompose received GNSS signals is outlined in Section 2.6.3.

2.6.1 Expectation Maximization (EM). The EM algorithm provides a way

to iteratively compute maximum likelihood (ML) estimates [89]. The EM algorithm

is particularly useful in what are called “incomplete data problems”—problems in

which estimation is complicated by the absence of some component of the data (so

estimation can’t be completed until the incomplete data is somehow determined).

There are two steps to the EM algorithm, the Expectation step (E-step) and the

Maximization step (M-step). A compact explanation of the EM algorithm is provided

in [90]. This explanation has been rewritten to apply to the scenario addressed in

this dissertation. An observed data vector r[n] is expressed as follows:

r[n] =
M−1∑
m=0

{sm[n]}+ η[n] (2.38)

where n provides a discrete time (sample) index and there are M signals sm[n] indexed

using m that are summed with additive noise η[n]. Each of the signals sm[n] has an

associated set of parameters θm (such as the signal amplitude Am, Doppler frequency

fm, relative propagation delay τm, and initial carrier phase φm) that are used to

construct sm[n]. If parameters are available for all the signals sm[n] present within

r[n] except for one, the signal for which parameters aren’t available is indexed as p.

Given the association between signals sm[n] and parameters θm, sm[n] can alternately
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be described as sm(θm). Given this notation, (2.38) can be rewritten as follows:

sp(θp) = r[n]− η[n]−
M−1∑
m=0

m 6=p

{sm(θm)} (2.39)

If the presence of noise η[n] in (2.39) is neglected, the E-step for this scenario is

expressed as follows [89], [90]:

sp(θp) ≈ r[n]−
M−1∑
m=0

m6=p

{sm(θm)} (2.40)

The complete signal data (which includes the signal with parameters sp(θp)) is defined

as follows:

y =
M−1∑
m=0

{sm(θm)} (2.41)

The M-step is then defined as follows [90]:

θ̂p = arg max
θ

[p (y|θ)] (2.42)

θ̂p is therefore the maximum likelihood estimate of θ given y. The EM algorithm

iterates between signals indexed from m = 0 to M − 1, obtaining estimates for θm

through the E-step and M-step until the parameters settle at converged estimate

values.

The EM algorithm has been shown in literature to be effective in solving for

parameters in scenarios constructed as expressed in (2.38), where signals sm[n] ad-

ditionally originate from different spatial direction (azimuth, for example) [91], [92].

This research permits the means by which multipath can be mitigated through the

use of beamforming, and is further extended in [93] to obtain parameter values for

signal amplitudes and propagation delays.
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2.6.2 Space Alternating Generalized Expectation Maximization (SAGE).

The SAGE algorithm modifies the EM algorithm to solve sequentially for individual

parameters in θ. This simplifies the M-step and generally improves the convergence

rate over what is expected from the EM algorithm [94]. The term “hidden data space”

used in this dissertation to describe signal decomposition using the SAGE algorithm

in Section 2.6.3 is introduced in [94]. Multiple hidden data spaces are used in SAGE

to generalize the complete data concept used in the EM algorithm [95]. The hidden

data spaces can then be freely ordered by the algorithm user for the most suitable

sequence. Because of the level of detail presented in Section 2.6.3, a summary of

previously published literature on the subject of SAGE as it applies to multipath ray

waveform parameter estimation will be provided in this section. The mechanics of

the SAGE algorithm, to include equations, will be presented in Section 2.6.3. Where

appropriate, sources for the content discussed in this section and applied in Section

2.6.3 will be cited with the subprocess or equation.

The SAGE algorithm is introduced in [94], but the initial work to outline the

practical applicability of SAGE to the problem discussed in Section 2.6.1 is presented

in [96] - [98]. The use of SAGE in the practical estimation of signal parameters such as

the azimuthal incidence angle, the complex amplitude (magnitude and initial carrier

phase), and the propagation delay is introduced in [96]. Signal parameter estimation

using SAGE is extended in [97] to include estimation of Doppler frequency as well as

the previously mentioned parameters. In [97], the order of estimation of parameters

for each signal sm(θm) in the case when only one antenna aperture is used in signal

reception is as follows: τm, αm, fm, and then αm again. SAGE literature uses complex

amplitudes expressed as follows: αm = Am exp (jφm). The resolution and convergence

speed of the SAGE algorithm are considered in detail in [99].

The first known consideration of SAGE in the estimation of GNSS signal multi-

path propagation delays is provided in [57]. The ingredients required to apply SAGE

to GNSS multipath delay estimation are outlined in [57], and are clearly modeled

heavily after [98]. Propagation delay estimation performance results from simulations
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are provided in [57]. Also considered in [57] is the initialization of the SAGE algo-

rithm. In this paper, all parameters for every ray waveforms present in the received

signal are initially equal to zero, though there is mention of the use of the Multiple

Signal Classification (MUSIC) algorithm [100] to obtain initial estimates of the prop-

agation delays for each of the ray waveforms. The number of ray waveforms present

in the model of the received signal is explicitly treated as given.

The integration of SAGE-based parameter estimation techniques into a software

GNSS receiver for use in the estimation of propagation delays present in simulated sig-

nals is outlined in [101]. This work is expanded upon in [102] through the integration

of SAGE-based parameter estimation into a multi-branch delay lock loop (DLL) soft-

ware GNSS receiver, similarly to MEDLL. The intent of [102] is to compare multiple

parameter estimators within a framework with shared receiver structure surrounding

the estimators.

The use of SAGE in conjunction with adaptive array processing is considered

in [103]. This fusion of techniques works to further mitigate multipath. SAGE in

conjunction with a multi-aperture array is shown to reduce multipath effects in GNSS

signals, which follows from early consideration of EM and SAGE to estimate the angle

of arrival of received signals [91] [92]. References [104] and [105] are similar to [103], in

that both publications discuss multipath mitigation using an antenna array and SAGE

in estimation of the direction of arrival of received ray waveforms. Since the research

documented in this dissertation considers the single receiver aperture scenario, these

papers provide background into the application of SAGE to the problem of GNSS

multipath, but do not directly apply to the problem addressed in this document.

2.6.3 Signal Decomposition using the SAGE Algorithm. EM and SAGE

represent what is believed to be the state-of-the-art in the estimation of GNSS mul-

tipath parameters. This section outlines how a SAGE-based decomposition process

is constructed, making use of previously published papers and community-developed

resources that are available to the general public. The sequence in which parame-
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ters are estimated originates directly from [97], thus estimation of the propagation

delay precludes estimation of the Doppler frequency. Estimation of the Doppler fre-

quency does not require prior knowledge of the complex amplitude for the waveform

in question.

The SAGE algorithm can be embedded within an iterative decomposition pro-

cess by which a received data vector rp is decomposed to obtain parameters for direct

path and multipath ray waveforms. The duration of the received data vector is re-

ferred to as the pre-detection integration time (PIT). The PIT is indexed using p,

so successive vectors of received data are indexed successively (p ∈ {0,N}). When

received signals are described, m is used to index the direct path and multipath ray

waveform estimates, where M is the total number of multipath rays. Ray waveform

parameter estimates are obtained iteratively, so precise notation to describe waveform

parameter estimates must not only provide information on the waveform estimate m,

but the iteration that contains m, as the same signal content is addressed repeatedly

in multiple iterations. To alleviate this, ε is used to index the set of ray waveform

parameter estimates output in iteration ε, referred to in this document as an “en-

semble.” ε is equal to zero for the first ensemble. The first ensemble of estimates will

contain one ray. The second ensemble of estimates will contain two rays. The third

ensemble of estimates will contain three rays, and so on. An example of this notation

would be the communication of the second multipath ray (m = 2) from the fourth

ensemble obtained using multiray processing (ε = 3) of the tenth PIT, p = 9. This

multipath ray waveform estimate would be expressed as r̂pεm = r̂932
. There may be

instances using this notation where the ensemble at large is considered, rather than

individual rays within an ensemble. When this is the case, notation only includes the

PIT index p and the ensemble index ε. An example of this would be r̂pε .

The SAGE-based decomposition process accepts either of the following sets of

initial ray waveform parameter estimates as inputs [57]:

• When the ray waveform estimate ensemble index ε = 0:
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– The initial estimate of the ray waveform amplitude Ãpε

– The initial estimate of the ray waveform Doppler frequency f̃pε

– The initial estimate of the ray waveform propagation delay offset τ̃pε

– The initial estimate of the ray waveform carrier phase φ̃pε

• When ε > 0:

– The vector of initial estimates of amplitudes for the ensemble of ray wave-

forms Ãpε

– The vector of initial estimates of Doppler frequencies for the ensemble of

ray waveforms f̃pε

– The vector of initial estimates of propagation delay offsets for the ensemble

of ray waveforms τ̃ pε

– The vector of initial estimates of carrier phases for the ensemble of ray

waveforms φ̃pε

Output from this process are the final ray ensemble parameter estimates asso-

ciated with the estimate waveform r̂pε (which contains the summation of direct path

and multipath ray waveforms, and neglects portions of the received data that are

determined to be noise). The specific parameters output from this process are as fol-

lows: the peak amplitude estimates Âpε , the frequency estimate f̂pε , the propagation

delay estimates τ̂ pε , and the carrier phase estimates φ̂pε . Estimates are obtained for

each of the ε+ 1 rays in ensemble ε.

GNSS literature makes use of the terms “search space” [106] or “search grid”

[107] to describe what is really a subset of the short-time Fourier transform (STFT)

obtained from received data. The operations in the STFT computation are modified

to additionally despread the direct sequence spread spectrum encoded GNSS signal

content. The search space contains the region of the STFT matrix that is likely to

contain GNSS signal content. The terms “search space” and “search grid” can both

be found in literature to describe the same STFT matrix output. In this dissertation,
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the terms “search space” and “search grid” are both used to describe the STFT matrix

and its constituent signal and noise content.

Before discussing the search space decomposition process, Ãpε , f̃pε , τ̃ pε , and φ̃pε

are defined as follows:

Ãpε =
[
Âpε−1 , Ãpε

]
(2.43)

f̃pε =
[
f̂pε−1 , f̃pε

]
(2.44)

τ̃ pε =
[
τ̂ pε−1 , τ̃pε

]
(2.45)

φ̃pε =
[
φ̂pε−1

, φ̃pε

]
(2.46)

Figure 2.1 illustrates the flowchart outlining the process used to decompose the

received data in PIT index p. This flowchart involves the execution of several subpro-

cesses, corresponding with the items in this section, where discussion of the specifics

of each of these subprocesses is provided. The specific implementation of the SAGE

algorithm provided in this discussion is a derivative of the algorithm developed for fre-

quency estimation and discussed as part of the Matlab Spectral Analysis and Linear

Prediction toolbox mentioned in [108]. The subprocesses for the SAGE-based decom-

position are as follows: defining of the boundaries for the ranges of trial parameter

values (Section 2.6.3.1), subtraction of interfering ray waveforms from received data

(Section 2.6.3.2), estimation of the propagation delay for the mth ray waveform (Sec-

tion 2.6.3.3), estimation of the Doppler frequency for the mth ray waveform (Section

2.6.3.4), computation of the amplitude and initial carrier phase for the mth ray wave-

form (Section 2.6.3.5), and updating of the SAGE ray waveform parameter matrix

(Section 2.6.3.6).
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Figure 2.1: Flowchart illustrating the SAGE-based decomposition process. Pro-
cesses are outlined in this section, with exceptions in cases where the flowchart pro-
cess label is self-explanatory, such as “m = m+ 1.” Each block is annotated with the
section number where the subprocess in this flowchart is explained in depth.
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2.6.3.1 Define Boundaries for Trial Parameters. This subprocess

accepts either f̃p0 and τ̃p0 (in cases when ε = 0), or f̃p0 and τ̃ p0 (in cases when ε > 0).

Output from this process are boundary values (both minimum and maximum) for the

trial parameters used to generate the trial ray waveforms being considered. Parameter

boundaries are output for the carrier frequency (fmin and fmax) and the propagation

delay (τmin and τmax). Also made available is the number of samples in rp, Np.

This subprocess is used to simply define the ranges from which trial parameters

for the carrier frequency ftrial and the propagation delay τ trial in the decomposition

process may be obtained. These ranges are defined as follows:

ftrial ∈ [fmin, fmax] (2.47)

τ trial ∈ [τmin, τmax] (2.48)

where trial parameter vectors ftrial and τ trial are expressed as follows:

ftrial = [ftrialm ]εm=0 (2.49)

τ trial = [τtrialm ]εm=0 (2.50)

The carrier frequency trial parameter range boundaries are fmin = f̃p0−1.1/TPIT

and fmax = f̃p0 + 1.1/TPIT (in cases when ε = 0) or fmin = f̂p0 − 1.1/TPIT and fmax =

f̂p0 + 1.1/TPIT (in cases when ε > 0). TPIT is the pre-detection integration period (in

seconds). In cases when ε > 0, fmin and fmax are scalars, since f̂p0 = f̂p00
(only one

ray waveform is parameterized in the estimate waveform generated from the initial

ensemble, since the highest ray index for an ensemble is equal to the ensemble index

itself). The propagation delay trial parameter range boundaries are τmin = τ̃p0−1.1Tc

and τmax = τ̃p0+1.1Tc (in cases when ε = 0) or τmin = τ̂ p0−1.1Tc and τmax = τ̂ p0+1.1Tc

(in cases when ε > 0). In cases when ε > 0, τmin and τmax are scalars, since τ̂ p0 = τ̂p00
.
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Subsequently to this subprocess is the subprocess denoted “Ω = 03×(ε+1), Ωprior =

03×(ε+1), g = 0, m = 0”. The following equations outline the operations in this subse-

quent subprocess, where Ω and Ωprior are initialized using zero matrices in accordance

with [57]:

Ω = 03×(ε+1) (2.51)

Ωprior = 03×(ε+1) (2.52)

g = 0 (2.53)

m = 0 (2.54)

2.6.3.2 Subtraction of Interfering Ray Waveforms from Received Data.

This process accepts the SAGE ray waveform parameter matrix Ω as an input and

outputs the difference between the received integration period-sized data and the

summation of estimate multipath ray waveforms that are not being considered in the

current iteration m (which equals the ray index being considered), rHDS. rHDS is

annotated as such because it makes use of the hidden data space discussed in SAGE

literature [94].

Ray waveform parameters must first be extracted from Ω. The following equa-

tions are used to extract these parameters:

Ăpε =
[
Ăpεm

]ε
m=0

= [|Ω(0,m)|]εm=0 (2.55)

f̆pε =
[
f̆pεm

]ε
m=0

= [Ω(3,m)]εm=0 (2.56)

τ̆ pε =
[
τ̆pεm

]ε
m=0

= [Ω(2,m)]εm=0 (2.57)

φ̆pε =
[
φ̆pεm

]ε
m=0

= [∠Ω(0,m)]εm=0 (2.58)

where ∠ denotes the phase angle computation, which is the same as the four quadrant

arctangent operation arg (Ω(0,m)). There are four row vectors in (2.55) - (2.58)

denoted with the following notation: [Ω(•,m)]εm=0. These vectors are composed of

53



ray waveform parameters values associated with each of the estimates obtained using

the SAGE algorithm. The first element in the vector is from the waveform denoted as

m = 0, the second element is from the waveform denoted as m = 1, and so on. There

are a total of ε parameters in each vector, as there are ε + 1 ray waveforms that are

parameterized after the εth iteration of the SAGE-based decomposition engine.

To perform this operation, a modification of the summation in (3.83) can be

used to obtain the received signal with estimates of interfering signals subtracted,

rHDS, as follows [57] [97]:

rHDS = rp −
ε∑
`=0

` 6=m

[
r̆pε`
]

(2.59)

where r̆pε` is as follows:

r̆pε` =


Ăpε` x̆pε` ◦

[
exp

(
j
(

2π(fIF + f̆pε` )Tsw + φ̆pε`

))]Np−1

w=0
, rp ∈ C

Re

{
Ăpε` x̆pε` ◦

[
exp

(
j
(

2π(fIF + f̆pε` )Tsw + φ̆pε`

))]Np−1

w=0

}
, rp ∈ R

(2.60)

where ◦ denotes Hadamard multiplication. The vectors [exp(•)]Np−1
w=0 serve as modula-

tion vectors. These vectors are indexed using w and are of length Np. The length Np

is the number of samples in a received data vector of duration equal to the integration

period. The computation of x̆pε` is performed using the following equation:

x̆pε` = x
(
τ̆pε`
)

(2.61)

where x is the direct sequence spread spectrum code vector for the PRN of interest

that has been delayed by τ̆pε` .

2.6.3.3 Estimation of Propagation Delay for Ray Waveform of Interest.

This process accepts rHDS, f̆pεm , τmin, and τmax as inputs and outputs the SAGE-

based maximum likelihood estimate of the propagation delay, τ̌pεm [57] [97] [98].
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Figure 2.2 illustrates the subprocess of estimating the propagation delay con-

tained within the SAGE-based decomposition process. This figure illustrates the

operations outlined in this section.

Start

Construct trial 

code delay 

vector x

End

Generate new 

trial 

parameter 

value 

(fminbnd)

Construct trial 

reference 

vector rtrial

Correlate rtrial 

and rHDS to 

obtain 

correlation 

statistic 

Compute 

objective 

function 

output 

Is fminbnd 

finished 

processing?

No

Output 

parameter 

estimate 

Yes

Figure 2.2: Flowchart illustrating the process of estimating parameters using the
SAGE algorithm. Parameter estimation (to include trial parameter generation) is
performed using the Matlab fminbnd function.

Trial values of the propagation delay, τtrial, must be generated to execute the

SAGE algorithm. Practical implementation of the SAGE algorithm to estimate propa-

gation delay involves use of the Matlab fminbnd function [108]. The fminbnd function

is based on “golden section search and parabolic interpolation” [109]. The fminbnd

function solves for the minimum of the argument, so the objective function must
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involve an inverse operation to estimate the propagation delay associated with the

maximum correlation function output (which is a function of the delay).

The trial code delay vector x(τtrial) must next be constructed. This vector is

used to encode the reference signal using the PRN sequence associated with the signal

of interest (in this research GPS C/A-coded signals). x(τtrial) is computed as follows:

x(τtrial) =

[
b

[⌊
Nc

(
wTs − τtrial

NcTc
−
⌊
wTs − τtrial

NcTc

⌋)⌋]]Np−1

w=0

, b ∈ {−1,+1} (2.62)

where b[•] is an element of the PRN sequence vector b designated by the natural

number inside the brackets (where b is the direct sequence spread spectrum encoding

chip sequence of length Nc), b•c indicates a floor rounding operation (rounding down

to the nearest integer on the real number line less than the value contained in the

modified brackets), Nc is the number of chips in the PRN sequence (Nc = 1023 for

GPS C/A-coded signals), and Tc is the chip duration (so Tc = 0.001/Nc = 0.001/1023

seconds for GPS C/A-coded signals).

The trial reference vector rtrial must now be constructed. This vector serves as

the reference against which rHDS is correlated. rtrial is computed as follows:

rtrial = x(τtrial) ◦
[
exp

(
−j2π

(
fIF + f̆pεm

)
Tsw

)]Np−1

w=0
(2.63)

where Ts is the sample period and Np is the number of samples in the integration

period of interest.

The trial reference vector rtrial is then correlated with rHDS, yielding the corre-

lation statistic C using the following operation:

C =

 1
Np

∑Np−1
w=0 {rtrialw · rHDSw} , rHDS ∈ C

2
Np

∑Np−1
w=0 {rtrialw · rHDSw} , rHDS ∈ R

 (2.64)

where rtrial = [rtrialw ]Np−1
w=0 and rHDS = [rHDSw ]Np−1

w=0 .
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The square of the magnitude of the correlation statistic is then inverted to ob-

tain the objective function output E
(
τtrial, f̆pεm

)
. The value of τtrial that minimizes

E
(
τtrial, f̆pεm

)
, as determined by the fminbnd function transparently to the user, is

then asserted as the propagation delay estimate τ̌pεm if the criteria to signify comple-

tion of the processing with the fminbnd function is met. Otherwise, this subprocess

is restarted using a different trial propagation delay value.

2.6.3.4 Estimation of Doppler Frequency for Ray Waveform of Interest.

This process accepts rHDS, τ̌pεm , fmin, and fmax as inputs and outputs the SAGE-

based maximum likelihood estimate of the propagation delay, f̌pεm [98].

As with the estimation of propagation delay outlined in Section 2.6.3.3, Figure

2.2 illustrates the subprocess of estimating the Doppler frequency contained within

the SAGE-based decomposition process. Figure 2.2 illustrates the operations outlined

in this section.

Trial values of the Doppler frequency, ftrial, must be generated to execute the

SAGE algorithm. As with estimation of the propagation delay, practical implemen-

tation of the SAGE algorithm to estimate the Doppler frequency involves use of the

Matlab fminbnd function, as discussed in Section 2.6.3.3.

The trial code delay vector x(τ̌pεm ) must next be constructed. x(τ̌pεm ) is com-

puted as follows:

x(τ̌pεm ) =

[
b

[⌊
Nc

(
wTs − τ̌pεm

NcTc
−
⌊
wTs − τ̌pεm

NcTc

⌋)⌋]]Np−1

w=0

, b ∈ {−1,+1} (2.65)

The trial reference vector rtrial must now be constructed. rtrial is computed as

follows:

rtrial = x(τ̌pεm ) ◦ [exp (−j2π (fIF + ftrial)Tsw)]Np−1
w=0 (2.66)

The trial reference vector rtrial is then correlated with rHDS using (2.66) and

(2.64) directly.
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The square of the magnitude of the correlation statistic is then inverted to ob-

tain the objective function output E
(
ftrial, τ̌pεm

)
. The value of ftrial that minimizes

E
(
ftrial, τ̌pεm

)
, as determined by the fminbnd function transparently to the user, is

then asserted as the Doppler frequency estimate f̌pεm if the criteria to signify comple-

tion of the processing with the fminbnd function is met. Otherwise, this subprocess

is restarted using a different trial Doppler frequency value.

2.6.3.5 Compute Amplitude and Carrier Phase for Ray Waveform of

Interest. This process accepts rHDS, f̌pεm , and τ̌pεm as inputs and outputs the

maximum likelihood estimates of the ray waveform amplitude and initial carrier phase,

Ǎpεm and φ̌pεm respectively.

To compute Ǎpεm and φ̌pεm , x(τ̌pεm ) must first be computed. x(τ̌pεm ) is computed

using (2.65) directly [57] [97] [98].

rtrial must then be computed using the following equation:

rtrial = x(τ̌pεm ) ◦
[
exp

(
−j2π

(
fIF + f̆pεm

)
Tsw

)]Np−1

w=0
(2.67)

The trial reference vector rtrial is then correlated with rHDS using (2.66) and

(2.64) directly to obtain C.

Finally, Ǎpεm and φ̌pεm are obtained directly using the following equations:

Ǎpεm = |C| (2.68)

φ̌pεm = ∠C (2.69)

2.6.3.6 Update SAGE Ray Waveform Parameter Matrix. This process

accepts Ǎpεm , f̌pεm , τ̌pεm , and φ̌pεm as inputs and outputs an update to the mth column

of Ω, where the remaining columns remain unchanged. This update is conducted using
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the following three equations:

Ω(1,m) = Ǎpεm exp
(
jφ̌pεm

)
(2.70)

Ω(2,m) = τ̌pεm (2.71)

Ω(3,m) = f̌pεm (2.72)

The process that follows, denoted “m = m + 1”, is used simply to increment

the index of the ray begin considered for evaluation when making use of the hidden

data space. This operation is expressed as follows:

m = m+ 1 (2.73)

Upon completion of the incrementing of the ray index, a decision point is

reached. If m > ε, parameter estimation iteration g for the ensemble of ε+ 1 rays is

complete, and another decision point is reached, “Is |Ω−Ωprior| < ΩT”. If m ≤ ε,

there are rays remaining for iteration g for which parameters remain to be estimated.

In this case, processing would continue with subtraction of interfering ray waveforms

from the received data, in order to consider the next ray in the ensemble. This

subprocess is outlined in Section 2.6.3.2.

The decision point “Is |Ω−Ωprior| < ΩT” is used to determine if the solution

for Ω has converged. If the difference for every element in |Ω−Ωprior| is less than ΩT ,

Ω is declared to have converged, and the algorithm is ready to complete processing

for ensemble ε. Otherwise, the decision point annotated as “Is g < gmax” awaits. The

value for ΩT used in this research is as follows:

ΩT =


0.1× 13×(ε+1)

0.1c× 13×(ε+1)

0.1× 13×(ε+1)

 (2.74)
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where the first row is unitless, the second row is expressed in sec, and the third row

is expressed in Hz. This composition of ΩT is selected to provide a reasonable assur-

ance of convergence, but probably restricts SAGE-based processing to computational

burden without a meaningful practical gain in estimation accuracy.

The decision point “Is g < gmax” is used to determine if the maximum number

of SAGE processing iterations g for ensemble ε has been reached. If g < gmax,

the maximum number of iterations has not yet been reached, and the subprocess

annotated as “Ωprior = Ω, g = g + 1, m = 0” awaits. If g = gmax, the algorithm is

ready to complete processing for ensemble ε.

The subprocess annotated as “Ωprior = Ω, g = g+ 1, m = 0” is used to reset or

increment the algorithm’s housekeeping variables. When this subprocess is complete,

processing would continue with subtraction of interfering ray waveforms from the

received data, in order to consider the 0th ray in the next ensemble. This subprocess

is outlined in Section 2.6.3.2.

When the algorithm is ready to complete processing, the subprocess annotated

as “Âpε ← |Ω0|, f̂pε ← Ω2, τ̂ pε ← Ω1, φ̂pε ← ∠Ω0” is performed using the following

equations:

Âpε = [|Ω(0,m)|]εm=0 (2.75)

f̂pε = [Ω(2,m)]εm=0 (2.76)

τ̂ pε = [Ω(1,m)]εm=0 (2.77)

φ̂pε = [∠Ω(0,m)]εm=0 (2.78)

2.7 Multipath Estimating Delay Locked Loop (MEDLL)

The MEDLL receiver originally developed primarily by van Nee makes use of

maximum likelihood estimation [110], which offers the optimal estimation approach

in the absence of prior knowledge being available for Bayesian estimation. With

MEDLL, pseudorange errors due to multipath are reduced significantly. To perform
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MEDLL processing, the following log-likelihood cost function is used [110]:

Γ(θ) =

∫
T0

∣∣∣∣∣r(t)− A1c(t− τ1)ejφ1 −
M∑
i=2

Âic(t− τ̂i)ejφ̂i
∣∣∣∣∣
2

dt (2.79)

where θ = (A1, A2, . . . , AM , τ1, τ2, . . . , τM , φ1, φ2, . . . φM) is the array of unknown pa-

rameters for which to be solved, T0 is the range of integration (so the range between

the start and end of the integration period), r(t) is the received signal, Ai is the am-

plitude of the ith ray waveform, c(t−τi) is the value of the code vector at t−τi (where

τi is the relative propagation delay of the ith ray waveform), φi is the initial carrier

phase of the ith ray waveform, and M is the number of received rays. Maximum like-

lihood estimates are obtained by setting to zero the partial derivatives of Γ(θ) with

respect to each parameter in θ. This operation yields a set of nonlinear equations

which present the possibility of being difficult to solve. This is overcome through use

of an overall approximation to the cross correlation functions, Rrc(τ), making use of a

set of reference correlation functions that have various delays, phases, and amplitude

values associated with them. Rrc(τ) is computed using the following equation [110]:

Rrc(τ) =
M∑
i=0

Ri(τ) (2.80)

where Ri(τ) is the portion of Rrc(τ) associated with the ith ray waveform.

A parallel bank of correlators that compute Rrc(τ) for various values of τ is

built into the MEDLL receiver architecture [110]. Cross-correlation values Rrc(τ) for

the various values of τ are input into the MEDLL processor.

MEDLL originally incorporated an interference cancellation component [110],

as with SAGE as described in Section 2.6.3.2.

MEDLL makes use of a bank of correlators set up within delay locked loops [54].

These loops are required by definition in order to describe MEDLL architecture. The
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values output from the bank of correlators are tracked over time in a delay locked

loop architecture in order to track multipath parameters.

As stated previously in this section, MEDLL offers the optimal parameter esti-

mation approach through the use of maximum likelihood estimation. This optimality

is the case as defined in terms of estimation theory, given the use of maximum likeli-

hood estimation [111]. MEDLL is indeed the conditionally optimal means by which to

obtain parameter estimates, but MEDLL also by definition requires the use of track-

ing loops that make use of information obtained from integration periods previous to

the period being considered for estimation. This use of previous tracking loop out-

puts presents a possible error source where inaccurate estimates of parameters from

previous integration periods impact the current estimates. In short, MEDLL does not

process integration periods independently from each other.

2.8 Signal Detection Theory

SDPA processing provides an ensemble of ray estimates to be used in modeling

the received GNSS signal. This ensemble is to consist of ray estimates describing the

GNSS signal in the absence of noise. In the scenarios considered in this research,

where the received GNSS signal in the presence of multipath interference is readily

observed in the received search grid, the first few ray estimates almost inevitably will

be obtained from content within the search grid consisting largely from the GNSS

signal itself, with noise not having a great deal of influence on the ray parameter

estimates. As decomposition progresses and the GNSS and multipath interference

signals within the search grid are deducted, noise will have greater influence over the

ray estimates. Eventually, if the decomposition algorithm perfectly deducts the GNSS

and multipath interference signals from the search grid, if the algorithm continues it

will obtain ray parameter estimates that strictly describe noise alone. Within the

construct of the algorithm, so long as one of the local maxima within the search grid

window of interest yields initial estimates that lead to a reduction in the difference

between the received search grid and the estimate search grid, the algorithm will
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continue to perform the decomposition process, regardless of whether the reduction in

difference between search grids results from the presence of a valid signal or multipath

interference, or from the presence of noise. Therefore, a criteria must be implemented

to dictate to the algorithm when no further decomposition is to be performed. To

implement this stopping criteria, signal detection theory (SDT) is considered.

Section 2.8.1 provides theoretic background on the subject of SDT. The appli-

cability of SDT to a signal decomposition stopping criteria is considered in Section

2.8.2. Theory behind determining the number of multipath rays present in a received

signal is provided in Section 2.8.3. Finally, a discussion of literature considering the

application of a stopping criteria to a signal decomposition algorithm is provided in

Section 2.8.4.

2.8.1 Signal Detection Theory (SDT) Background. The motivation for SDT

is the need for autonomous decision making. Detection theory problems involve mak-

ing correct decisions among a finite number of alternatives, or states [111] [112].

In SDT, the evidence variable is the independent, or input, variable used to dic-

tate the output of a decision engine [113]. Within this discussion of SDT background,

the evidence variable is denoted x . There will be two possibilities, or states, that take

place, for purposes of this discussion. These two states are denoted s and n (implying

signal plus noise and just noise, respectively). Therefore, the conditional probability

that the evidence variable is equal to x given state s has occurred is denoted P (x |s).

The conditional probability that the evidence variable is equal to x given state n has

occurred is denoted P (x |n). The likelihood ratio, l (x ), is expressed as follows [113]:

l (x ) =
P (x |s)
P (x |n)

(2.81)

Note that the evidence variable x may be multi-dimensional in nature. If this is the

case, the evidence variable is denoted as ~x = [x0, x1, x2, · · · ].
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The input variables, or “stimulus events” s and n correspond with possible

“response events” S and N , respectively [113]. Alternately, the events can be expressed

using a hypothesis testing convention. In this case, S and N are expressed as H1

(detection) and H0 (no detection), respectively [111].

There are four combinations of stimulus and response events [76], [113]: a “hit”

(the decision engine correctly outputs a detection), a “miss” (the decision engine

incorrectly outputs no detection), a “false alarm” (the decision engine incorrectly

outputs a detection), and a “correct rejection” (the decision engine correctly outputs

no detection). The probability of a “hit” is denoted by P (S |s), the probability of

a “miss” is denoted by P (N |s), the probability of a “false alarm” is denoted by

P (S |n), and the probability of a “correct rejection” is denoted by P (N |n). Using

the hypothesis testing convention, a false alarm is called a Type I error, when H1 is

decided when H0 is true. A miss is called a Type II error, when H0 is decided when

H1 is true.

The decision rule used to decide between S and N is stated in terms of likelihood

ratios as follows [113]:

If l (x ) < B, decide N ; else if l (x ) ≥ B, decide S (2.82)

where the “decision criterion” B is valued at B = 1, establishing a threshold for the

decision engine whereby any value falling below B is decided not to be a detection,

and any value falling at or above B is decided to be a detection. Note that decision

rules may require that different regions of values of x result in the same decision [76].

The objective in establishing the “decision criterion” is to optimize the perfor-

mance of the decision engine. When the prior probability P (s) does not equal the

prior probability P (n), the “decision criterion” is expressed as follows [113]:

B =
P (n)

P (s)
(2.83)
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In cases where the evidence variable is multi-dimensional, joint probabilities are used

to establish decision criteria [111].

The decision rule can be stated differently as follows [76]:

If P (n|x ) > P (s|x ) , decide N ; else decide S (2.84)

Until this point, the assumption is made in this discussion that no rewards or

penalties are assigned to the various responses (for example, the cost of a false alarm

being of higher consequence than the value of making a hit). To account for this

possibility, the “decision criterion” is expressed as follows [113]:

B =
(VnN + CnS)P (n)

(VsS + CsN )P (s)
(2.85)

where VnN is the value of a correct rejection, CnS is the cost of a false alarm, VsS is the

value of a hit, and CsN is the cost of a miss. Typically, rules are established to keep

the proportion of false alarms below some sort of threshold. The tradeoff is that with

a reduction in false alarms comes a reduction in the proportion of properly detected

hits as well. Fundamentally, the decision engine should be designed to minimize risk

(cost minus value) for every value of x [76].

Given the decision criterion in (2.85), the decision rule in (2.82) can be restated

using the hypothesis testing convention to express the likelihood ratio test as follows

[111]:

l (x )

S

≷

N

B (2.86)

How well the decision engine is able to make correct decisions while avoiding

incorrect decisions is called sensitivity [113] (or discriminability [76]). The extent to

which the decision engine favors one hypothesis over another is called bias.
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Given the probability of a hit (P (S |s)) and the probability of a “false alarm”

(P (S |n)) for various decision criteria B, the receiver operating characteristic (ROC)

curve can be generated [76] [113]. The ROC curve is used to describe the performance

of the decision engine in discriminating between detection events (s) and non-detection

events (n). The greater the area under the ROC curve, denoted P (A), the better

the performance of the decision engine. When using ROC curves, decision rules are

generally made by varying a single control parameter, generating the ROC curve,

and then comparing the curve with curves generated when using other values for the

control parameter [76].

In cases where the prior probabilities P (S) and P (N ) are unknown, (2.85)

cannot be solved explicitly. In this case, the decision rule typically seeks to minimize

the maximal conditional risks. This is called the minimax rule [76] [112]. A conditional

risk is the cost of choosing a hypothesis when another hypothesis is true multiplied

by the probability choosing that hypothesis when another is true.

There are situations where neither a priori probabilities (as with minimax hy-

pothesis testing) nor realistic costs cannot be determined, or it would be desirable

to impose costs [112]. To bypass this difficulty, conditional probabilities are used.

These conditional probabilities include the probability of correct detection (a hit),

PD = P (S |s), and the probability of false alarm, PFA = P (S |n). When these condi-

tional probabilities are used, the goal of the decision engine is typically to constrain

PFA while maximizing PD. This decision making approach is called the Neyman-

Pearson criterion [76], [111]. Alternately, since the probability of a miss is equal to

1− PD, the probability of a miss can be minimized instead of dealing explicitly with

PD. The Neyman-Pearson criterion is expressed as follows [112]:

max
B

(PD (B)) subject to PFA (B) ≤ α (2.87)
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where α is the constraint on the probability of false alarm. Several probability dis-

tributions, including the Gaussian distribution, can be used in obtaining analytic

Neyman-Pearson decision criterion [76].

The discussion above only addressed simple hypothesis testing problems (only a

single distribution for the observation, or evidence, is used), but in many hypothesis

testing problems multiple distributions can occur under each of the hypotheses. This

scenario is referred to as composite hypotheses [112].

Literature stresses the importance of selecting the best parameters to use in

making detection or non-detection, or classification, decisions [76]. Sensors such as

radar that decide between detection and non-detection may simply make use of the

amplitude of the radar return in autonomous decisions that a detection occurred.

However, a lot of detection problems may be treated as classification problems, where

multiple parameters are available to choose from when trying to make autonomous

detection decisions. Furthermore, there may be a need to make use of multiple pa-

rameters in order to obtain a “feature space” that can be partitioned into regions with

boundaries that separate decision outputs. Discussion of a feature space is really a

restating of the use of a multi-dimensional evidence variable ~x . It should be pointed

out that [76] states explicitly that hypothesis testing is not the same thing as pattern

classification. Therefore, care is required in making use of pattern classification theory

and terminology.

In the absense of analytically determined decision rules, a decision engine is

trained using data where the truth is known [76]. As stated in [76], the most effec-

tive means by which to develop classifiers is to learn from example patterns through

training.

2.8.2 Applicability of Signal Detection Theory to a Signal Decomposition Stop-

ping Criteria. In the case of search grid decomposition that obtains estimates of

multiple rays simultaneously using an iterative approach (referred to here as “multi-

ray”), an ensemble of estimate ray waveforms is summed to yield an aggregate esti-
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mate of the GNSS direct path and multipath signals, thus an estimate search grid.

In instances where C/N0 is high, the estimate for the first ray (m = 0) will almost

inevitably originate from the search grid direct path and/or multipath content. There

are three possible outcomes as ray waveform estimate parameters are added to the

ensemble: 1) iteration progresses the algorithm towards reaching the error minimum

between the truth and the estimate, 2) iteration has progressed to the point where

the error minimum is reached with the current iteration, or 3) the error minimum has

already been reached and further iteration is not necesssary. Correct detection occurs

in the first and second cases, and a false alarm occurs in the third case. In the first

case, it is desired that the algorithm continue processing. In the second and third

case, it is desired that the algorithm halts. To decide whether to continue decompo-

sition iterations, an evidence variable must be determined. The evidence variable is

denoted Fpε , and is discussed in Section 3.3.13. The state denoting a correct detection

is denoted s. The false alarm state is denoted n.

The cost of a poor decision may very greatly, depending on the difference in

error between the ray waveform ensemble decided to be the lowest in error, versus the

ensemble that is truly lowest in error. If there is little difference in error, there may

be little cost in making an incorrect decision.

2.8.3 Estimating the Number of Multipath Rays. Fundamentally, the need

for development of a stopping criteria is a product of the uncertainty regarding the

number of multipath rays to estimate. This problem is discussed in literature on

MEDLL [114] and SAGE [57], and presents itself in the case of SDPA as well.

In the general case of wireless communications signaling, literature outlines

various techniques for estimation of the number of multipath rays present in a re-

ceived signal. A method for estimation of the number of multipath rays as part of

application of autoregressive multipath parameter estimation techniques is outlined

in [115]. Another method for the estimation of number of multipath rays as part of a

subspace-based method for estimating signal parameters is outlined in [116]. A simi-
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lar method involves making use of eigenvalues from the covariance matrix of channel

estimates [117] [118]. Still another method involves the determination of the number

of multipath rays as a product of the use of the MUSIC algorithm and multi-aperture

processing [119]. It is important to point out that, in general wireless communications

signaling, the intent of the receiver is not to recover precise signal reception timing

information, as with GNSS receiver signal processing, but to recover the original in-

formation output by the transmitter. Therefore, multipath estimation and mitigation

techniques are couched in terms of the impact of multipath on bit values, rather than

on ray waveform reception timing information. The signal models are the same be-

tween wireless communication and GNSS, but the intent of channel modeling research

is different between the two fields.

In the case of GNSS receiver signal processing, [120] asserts that the Minimum

Description length and the Generalized Likelihood Ratio Test are the most widely

used means by which the number of mulitipath rays is estimated.

2.8.4 Signal Decomposition Stopping Criteria. An alternate approach to

the problem of estimating the number of rays present in the received signal is to

decompose the signal until a stopping criteria is reached. This approach, which is

used in the research presented in this dissertation, involves estimating ray parameters

until the residual remaining after comparing the received and estimate waveforms is

reduced until a stopping criteria threshold is crossed.

Generally speaking, the application of a stopping criteria to a decomposition

algorithm is considered to be ad hoc in nature. There are many examples in literature

where a stopping criteria is applied to a signal decomposition algorithm. [121] outlines

the consideration of a stopping criteria when using the Hilbert-Huang transform,

which uses Empirical Mode Decomposition (EMD). The stopping criteria is considered

extensively when using EMD [122] [123] [124]. In the case of the research reported in

[125], EMD requires use of a stopping criteria that is determined through simulations

and experiments. Ultrasonic Chirplet Signal Decomposition makes use of a stopping
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criteria based on the value of a signal reconstruction error or when a predefined

number of iterations occurs [126]. The application of a stopping criterion as part of

the application of the Perceptual Matching Pursuit algorithm for audio coding based

on the amount of energy present in a residual is outlined in [127]. The algorithm itself

is used in the parameterization and compression of audio signals. A similar approach

for Matching Pursuit Decomposition (MPD) as it applies to the evaluation of life

estimates of aerospace structures is considered in [128]. The use of MPD as it applies

to parameterizing electric signals in power systems, to include the specification of a

stopping criteria similarly to the other matching pursuit papers mentioned is outlined

in [129]. Signal decomposition making use of Singular Value Decomposition (SVD)

and requiring use of a stopping criterion is outlined in [130]. The use of a pre-existing

number of iterations to be performed in decomposition, or the reduction in energy

within a residual remaining after comparison of received and estimate signals is a

recurring theme in stopping criteria literature.

2.9 GNSS Signal Simulators

Thombre et al. present a large, though not exhaustive, list of the various

software-based GNSS signal simulators that have been constructed both in academia

and in industry [131]. He offers a comparison and a contrast between various sim-

ulators, and provides a Simulink-based GNSS simulator design as well. As part of

this Simulink-based simulator, a channel model is presented that would include five

multipath components, as well as additive white Gaussian noise (AWGN). This chan-

nel model would make use of a channel impulse response function, seen in [71] for

example, to generate multipath signals that are added to the simulated LOS signal.

Thombre categorizes software-based GNSS simulators into three different generations,

and states that that simulation of multipath effects is available in generally in the sec-

ond and third generations.

According to [131], the first generation of software-based GNSS signal simulators

did not typically make use of error modeling.
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Three examples of what Thombre classifies as falling in the second generation

of GNSS simulators are outlined in [132] [133] and [134]. Reference [132] describes

simulation of multipath by generating up to seven rays for each transmitted GNSS

signal in the simulation. Each ray is a variation of the LOS signal, with varied

amplitude, phase, and propagation delay. Reference [133] describes simulation of

two types of multipath, diffuse and specular. Diffuse multipath is said to result

from near echoes (scattering), whereas specular multipath is said to result from far

echoes (reflections). In 2.4.1.2, the term “fading” is used to describe what [133]

calls diffuse multipath, and a Rayleigh distribution is used to model the amplitude

of near echoes. Additionally, [133] uses ground reflection (the reflection of a GNSS

transmission off the ground and then to the receive antenna) as an example of specular

reflection. Specular reflection is addressed in 2.4.1.4, and in [133] a ray model is used

to simulate the placement of reflectors around the receive antenna as GNSS space

vehicles are simulated as transmitting navigation signals overhead. Reference [134]

simulates multipath in terms of range measurement errors, rather than by adding

probabilistic elements to simulated GNSS signals. These techniques, as described by

Thombre, are relatively simple compared to those implemented in third generation

software-based simulators.

Three examples of what Thombre classifies as falling in the third generation of

GNSS simulators are outlined in [71], [135], and [136]. The details for the simulator

outlined in [71], which make use of the DLR measurement campaign, are discussed

in Section 2.4.2.2. Reference [135] describes the application of specular or statistical

models making use of Rice or Rayleigh distributions. Reference [136] describes the

use of a ray shooting algorithm based on electromagnetic propagation theory. This

ray shooting approach makes use of the physics-based models, rather than signal

simulation that makes use of probabilistic models. This physics-based approach was

described in Section 2.4. The local environment is simulated using these models.
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2.10 Structures of GNSS Signals Other than GPS

There are three global radionavigation satellite constellations other than GPS

that are currently implemented or soon to be implemented. These constellations

include GLONASS, Compass, and Galileo, arguably in order of constellation maturity.

For the civil, or open, signals transmitted by the satellites associated with each of the

four systems, the carrier frequency range employed by all the constellations ranges

from approximately 1561.098 to 1605.375 MHz (between Compass B1 [137], GPS

L1 [4], Galileo E1 [138], and GLONASS G1 [139]). These constellations make use

of signals that are encoded with direct sequence spread spectrum (DSSS) encoding

vectors, as does GPS.

To provide background for discussion of signals from constellations other than

GPS, background on GPS is again provided. With GPS signals, a carrier frequency

is used to modulate a baseband signal consisting of a direct sequence spread spec-

trum code vector using 1023 chips that is alternated in sign through binary phase

shift keying [4] to provide the means of modulating the signal in order to transmit

navigation data. This signal structure is very similar to the signals employed by other

constellations.

GLONASS uses frequency division multiplexing to distinguish between signals

from different satellites [139]. Among all the GLONASS open signals, the carrier

frequencies are centered at 1602 MHz. Given the use of frequency division multi-

plexing, individual channels are employed for different satellites. These channels are

separated by 0.5625 MHz. There is, however, a DSSS encoding sequence embedded

in GLONASS open signals. These encoding sequences are of a length equal to 511

chips. GLONASS uses binary phase shift keying in order to modulate the signal for

navigation data transmission.

Compass signals are transmitted at a carrier frequency of 1561.098 MHz [137]

and contain DSSS encoding sequences that are of length equal to 2046 chips [140].
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Compass uses quadrature phase shift keying to modulate the signal for navigation

data transmission.

Galileo signals are transmitted at a carrier frequency of 1575.42 MHz (same as

GPS) [138] and contain DSSS encoding sequences that are of length equal to 4092

chips. Galileo uses phase shift keying to modulate the signal for navigation data

transmission. Galileo additionally makes use of binary offset carrier signals in order

to reduce the potential of interfering with and being interfered with by GPS signals.

This binary offset carrier simply involves the use of an additional square sub-carrier

modulation similar to the DSSS encoding sequence in order to ensure distinction from

GPS signal.

This information provides the means by which to compare the receiver signal

processing methodology required for each of the four constellations.

2.11 Summary

This chapter outlines the theory underpinning the research in this dissertation.

Previous research provides insight into the problem of GNSS multipath ray waveform

parameter estimation, and also reveals that the specific problem being considered in

this research (the development of a decomposition algorithm designed specifically to

obtain parameters from which models can be derived) has not yet been addressed.
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III. Signal Decomposition and Parameterization Algorithm

(SDPA)

3.1 Introduction

This chapter outlines the details of SDPA. This algorithm was developed in

research for this dissertation to decompose a received GNSS signal in order to obtain

parameters for received multipath rays. This decomposition process has been docu-

mented and previously published [141] [142], and serves as the framework by which

iterative decomposition takes place. This framework provides the flexibility required

to accommodate variations in how signal parameters are obtained. This flexibility

allows for interchangeability of the SDPA search space decomposition methodology

with the SAGE-based decomposition process described in Section 2.6.3. Because of

this, side-by-side estimation performance comparisons can be fairly conducted. The

results of these comparisons are discussed in Chapter IV.

An introduction to the algorithm that describes the top-level concept employed

in this algorithm and the decomposition process underpinning the algorithm is pro-

vided in Section 3.2. The top-level flowchart illustrating the process that is imple-

mented and traced to the top-level concept is provided in Section 3.3. This section

presents the mechanics associated with the algorithm itself, with a canonical descrip-

tion of the operations within the algorithm. The reader of this dissertation should be

able to reconstruct SDPA given this section of the dissertation. Finally, Section 3.4

provides a comparison of SDPA- and SAGE-based decomposition algorithms.

3.2 Algorithm Concept

Figure 3.1 illustrates a top-level flowchart of the intra-PIT signal decomposition

algorithm. This figure corresponds directly with the process flowchart illustrated in

Figure 3.2. The concept behind the algorithm is simple. First, RF front end functions

(such as frequency downconversion and signal sampling) are performed. Then, the

signal is aligned so that data is processed by the decomposition algorithm only in

integer multiples of the duration of the PRN code sequence present in GPS L1 C/A-
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coded signals (so integer multiples of 1 msec). The decomposition algorithm is only

to process whole periods of the PRN code sequence (so a PIT-sized data vector is

processed, where the first sample in the data vector is from the first chip in the

PRN sequence, and the last sample in the vector is from the last chip in the PRN

sequence). Once alignment takes place, received data that is sized to be of PIT-sized

duration is input for search grid computation and initial ray parameter estimation.

The amplitude, the Doppler frequency, the relative propagation delay, and the carrier

phase are then coarsely estimated. These coarse parameter estimates are then used to

initiate fine estimation of these four parameters for a ray waveform using a stochastic

search and optimization technique (simulated annealing), and the portion of the search

grid associated with the estimated parameters is removed from the search grid. The

remainder of the search grid is then evaluated to obtain a stopping criteria statistic.

The stopping criteria statistic is obtained by comparing the peak power of the search

grid with the noise power present in the search grid. The stopping criteria statistic

is then evaluated to determine if the stopping criteria is satisfied. If the criteria is

satisfied, this signifies that all rays present in the search grid are treated as having

been estimated by the algorithm, and the algorithm advances to the next PIT for

decomposition. If the criteria is not satisfied, the search grid is evaluated to compute

the estimate error, and the algorithm processor decides if the estimate error can be

further reduced. If so, decomposition of the current PIT continues, and the matrix

difference between the received and estimate search grids is computed for use in

subsequent coarse ray parameter estimation. This continues until there are no more

rays to estimate. If error cannot be reduced, all rays present in the search grid are

treated as having been estimated by the algorithm, and the algorithm advances to

the next PIT for decomposition. This loop takes place until all data is processed and

parameterized.
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Figure 3.1: Top-level flowchart illustrating intra-PIT signal decomposition algo-
rithm.

A previous version of SDPA made use of hard estimate decisions on ray waveform

parameter estimates [141]. However, this methodology (referred to here as “SDPA

single ray estimation”) was determined to be inadequate in obtaining estimates of

the received search space that explicitly present destructive multipath interference. A

revision of the SDPA algorithm has been undertaken to make use of soft ray waveform

parameter estimate decisions that are obtained simultaneously through the parallel

estimation of multiple ray waveform parameters, as part of the stochastic search block
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in Figure 3.1. This approach to ray waveform parameter estimation is referred to as

“multiray” estimation. This approach to waveform parameter estimation complicates

the notation used to describe the algorithm, relative to the notation used in [141].

It is important to point out that the intent of SDPA is to replicate ray waveform

parameters from received data with the intent of constructing a model that describes

these parameters over time. This model could then be used in the construction of a

simulator that provides a better assurance of the presence of what could be expected

from a real-world environment than would would be the case using existing simulators.

SDPA is not designed to obtain precise estimates for individual ray waveform param-

eters. Therefore, it is possible that ray waveform parameter estimates obtained using

SDPA may not accurately reflect the ray waveform parameters that truly comprise

received signals.

3.3 Process Flowchart

Figure 3.2 illustrates the flowchart outlining the process used to estimate the

multipath-propagated rays received with a software receiver. This flowchart involves

the execution of several processes, corresponding with sections of this chapter where

discussion of the specifics of each of these processes is provided. The processes illus-

trated in the flowchart in Figure 3.2 generally correspond with the processes in the

flowchart in Figure 3.1. The processes in Figure 3.2 are as follows: downconversion of

received data to an intermediate frequency (Section 3.3.2), sampling of data (Section

3.3.3), buffering of code-aligned data (Section 3.3.4), computation of the search grid

from received data (Section 3.3.5), estimation of the initial search grid peak location

(Section 3.3.6), estimation of initial parameters (Section 3.3.7), decomposition of the

search space (Section 3.3.8), computation of the estimate search space (Section 3.3.9),

comparison of received and estimate search spaces (Section 3.3.10), computation of

the estimate error (Section 3.3.11), output of parameters to the ray database (Section

3.3.12), computation of the stopping criteria statistic (Section 3.3.13), determination

of alternate search grid comparison regional maxima to consider (Section 3.3.14),
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and initial estimation of search grid alternate peak locations (Section 3.3.15). There

are a few other processes and decisions for which the flowchart process label is self-

explanatory, such as “p = p+ 1” and “ε = ε+ 1”, which are used simply to increment

the data vector to consider (in terms of the PIT p, where the number of PIT-sized

data vectors contained in the data set is pmax) and the multipath ray parameter en-

semble to consider (where ε is the index for the multipath ray parameter ensemble

within PIT p), respectively. The decision points “Is ε = 0”, “Is Epm ≤ Epm−1”, “Is

Fpε < Υ”, and “Is p > pmax” are each outlined within the section associated with

the process that leads to the decision. The search space decomposition algorithm will

be outlined with an additional flowchart as part of the section that addresses that

process (Section 3.3.8).

As stated previously, the processes illustrated in the flowchart in Figure 3.2

generally correspond with the processes in the flowchart in Figure 3.1. The reason two

flowcharts are provided is to separate the functional description from the architectural

description of the algorithm. The functional description is provided in the flowchart in

Figure 3.1 and the architectural description of the algorithm is provided in Figure 3.2.

These two flowcharts, respectively, are to communicate a conceptual and a mechanical

understanding of the algorithm. To understand the process flow as narrated in this

chapter, the flowchart in Figure 3.2 will be of particular use. The correspondence

between the two flowcharts can be traced as follows:

• The portions that are performed in hardware (and surrounded by shaded boxes

in each of the flowcharts) correspond with each other.

• “PRN sequence alignment and buffering” in Figure 3.1 corresponds with “Code

aligning buffer” in Figure 3.2.

• “Estimate ray waveform parameters” in Figure 3.1 corresponds with “Received

data search grid computation,” “Initial search grid peak location estimation,”

“Initial parameter estimation,” and “Search space decomposition” in Figure 3.2.
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• “Compute stopping criteria statistic” processes in each flowchart correspond

with each other.

• “Is stopping criteria met?” in Figure 3.1 corresponds with “Is Fpε < Υ” in

Figure 3.2.

• “Compute search space estimate error” in Figure 3.1 corresponds with “Com-

pute estimate search space,” “Compare received and estimate search grids” and

“Compute estimate error” in Figure 3.2.

• “Is error reduced?” in Figure 3.1 corresponds with “Is Epε ≤ Epε−1” in Figure

3.2.
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Figure 3.2: Flowchart illustrating the signal parameterization algorithm. Processes
are outlined in Section 3.3, with exceptions in cases where the flowchart process label
is self-explanatory, such as “p = p+ 1” and “ε = ε+ 1”. The section number for the
discussion corresponding with each block is provided in the flowchart.
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• “Advance to next ensemble” in Figure 3.1 corresponds with “ε = ε + 1” in

Figure 3.2.

• “Compute matrix difference between received and estimate search grids” in

Figure 3.1 corresponds with “Compute estimate search space” and with sub-

processes within “Initial search grid peak location estimation” in Figure 3.2.

• “All rays are estimated” in Figure 3.1 corresponds with “Output parameters to

ray database” in Figure 3.2.

• “Advance to next PIT” in Figure 3.1 corresponds with “p = p + 1” in Figure

3.2.

3.3.1 Ray Model of Received Signal. In this algorithm description, the

following model will be used for the continuous time-domain received signal r(t),

following the development for (2.10) in Section 2.2.3:

r(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) cos (2π (fL1 + fDm(t)) t+ φrm) + η(t) (3.1)

where m is the index of the multipath ray and the LOS ray is the 0th multipath ray

(so m = 0 for the ray assumed to be LOS), M(t) is the number of multipath rays

at time t, Am(t) is the peak amplitude of the signal from the mth ray at time t,

D(t − τm) is the value of the navigation data message symbol at time t − τm, τm is

the propagation delay of the mth ray between the transmitting SV and the receiver,

x(t−τm) is the value of the C/A-coded PRN sequence chip value at time t−τm, fL1 is

the center frequency of the GPS L1 band, fDm(t) is the Doppler frequency offset from

the L1 center frequency at time t, φrm is the carrier phase of the mth multipath ray,

and η(t) is the white Gaussian noise that is added to the received LOS and multipath

signals at time t. This model will be used to fundamentally describe the signal at

entry into the receiver throughout the remainder of this section.
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3.3.2 Downconverting Received Data to an Intermediate Frequency. This

process is executed in the RF front end hardware of the software receiver. This section

is provided to present the model that is used to describe the output of the downcon-

version process. As described in 2.3.1.1, this process accepts r(t) as an input and

outputs the downconverted received signal rIF(t) whose band has a center frequency

of fIF. There are frequencies other than fL1 that are available for various GPS users,

but for the purposes of this description of the multipath estimation algorithm, only L1

will be considered. The equation used to describe the output of the downconversion

process is as follows:

rIF(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) cos (2π (fIF + fDm(t)) t+ φm) + η(t) (3.2)

where fIF is the intermediate frequency of the receiver, and φm is the carrier phase

of the mth multipath ray at the input into the ADC. It is assumed that rIF(t) is

filtered using an ideal bandpass filter centered at fIF. GNSS receivers such as the

TRIGR typically use an intermediate frequency when outputting downconverted and

sampled signals for processing by the user. This process within a software receiver is

transparent to the user. Note at this point that the carrier phase of the multipath ray

input to the ADC may be completely different from the carrier phase of the original

received signal, thus the distinction between φrm in (3.1) and φm in (3.2). This does

not impact how the signal is processed. Again, the equation above is a model that

makes use of the assumption of ideal bandpass filtering in its development.

This equation for r(t) sufficiently serves as the model for the TRIGR receiver,

which processes real-valued data from received signals, but does not describe the

model to be used for a receiver that makes use of complex-valued data. A receiver

that makes use of complex-valued data processes a simultaneous in-phase signal i(t)

and quadrature signal q(t). The model to describe continuous time-domain data
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where in-phase and quadrature signals are both present is as follows:

rIF(t) = i(t) + jq(t) + ηi(t) + jηq(t) (3.3)

where j =
√
−1. Note the presence of complex-valued noise in this model. This

is done to account for the presence of zero-mean white Gaussian noise that is added

independently to both the in-phase and quadrature signals. The noise on the in-phase

signal and the noise on the quadrature signal are independent of each other, and share

the same variance (referred to as “circular”). The continuous time-domain in-phase

and quadrature signals i(t) and q(t) are modeled as follows:

i(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) cos (2π (fIF + fDm(t)) t+ φm) (3.4)

and

q(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) sin (2π (fIF + fDm(t)) t+ φm) (3.5)

rIF(t) ∈ C is now restated using a complex exponential instead of sine and cosine

functions:

rIF(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) exp (j (2π (fIF + fDm(t)) t+ φm))+ηiq(t) (3.6)

where

ηiq(t) = ηi(t) + jηq(t) (3.7)

rIF(t) ∈ C is further restated by dividing the complex exponential term into two

separate terms for the carrier frequency and the carrier phase as follows:

rIF(t) =

M(t)∑
m=0

Am(t)D(t− τm)x(t− τm) exp (j (2π (fIF + fDm(t)) t)) exp (jφm) + ηiq(t)

(3.8)
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3.3.3 Sampling Data. This process is executed in the front end hardware

of the software receiver. This section is provided to present the model that is used

to describe the output of the sampling process. As described in Section 2.3.1.2, this

process accepts rIF(t) as an input and outputs the discrete time-domain received signal

r[n]. For bookkeeping purposes, the PIT index value will be initialized by asserting

that p = 0. The equation used to express the sampling of rIF(t), which yields r[n], is

as follows.

r[n] = rIF(nTs), n ∈ N (3.9)

where n is the sample index and Ts is the sampling period. This process within a

software receiver is transparent to the user. This yields the following result:

r[n] =

M [n]∑
m=0

Am[n]Dm[n]xm[n]fm[n]θm[n]

+ η[n] (3.10)

M [n] = M(nTs) (3.11)

Am[n] = Am(nTs) (3.12)

Dm[n] = D(nTs − τm) (3.13)

xm[n] = x(nTs − τm) (3.14)

fm[n] = exp (j (2π (fIF + fDm(nTs))nTs)) (3.15)

θm[n] = exp (jφm) (3.16)

η[n] = ηiq(nTs) (3.17)

Note the use of notation where only the discrete-time index is used (as in M [n]),

rather than the use of the sampling period multiplied by the discrete-time index (as

in M(nTs)). This is to make use of the notation convention used in [7] to indicate that

these equations, as well as subsequent equations that make use of the discrete-time

index alone in brackets, compose vectors of values over discrete time instances.
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3.3.4 Buffering of Code-aligned Data. This process accepts r[n] and p as

inputs and outputs the buffered vector of received data rp of size Np. The definition

of code alignment is explained further in this section, particularly to describe (3.29).

As part of this process, for bookkeeping purposes, the ensemble index value will be

initialized by asserting that ε = 0.

The code-aligning buffer processes the discrete time-domain received data r[n],

where r[n] ∈ {R,C}, and divides r[n] into vectors of size Np. Therefore, rp is expressed

as follows:

rp = [r[n]]
Np−1+pNp
n=pNp

, p ∈ N (3.18)

However, this can be restated as:

rp =

M [n]∑
m=0

Am[n]Dm[n]xm[n]fm[n]θm[n] + η[n]

Np−1+pNp

n=pNp

(3.19)

Because of this, (3.18) can be restated as a sum of individual vectors as follows:

rp =

(
Mp∑
m=0

rpm

)
+ ηp (3.20)

where

rpm = [Am[n]Dm[n]xm[n]fm[n]θm[n]]
Np−1+pNp
n=pNp

(3.21)

and

ηp = [η[n]]
Np−1+pNp
n=pNp

(3.22)

Note this expression is constrained by making the assumption that the number of

rays is fixed within one PIT, thus Mp = M [n]∀n ∈ {pNp, pNp + 1, . . . , Np− 1 + pNp}.

(3.21) is restated as follows:

rpm = ApmDpmxpm ◦ fpmθpm (3.23)
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where ◦ denotes the Hadamard product (element-by-element array multiplication).

The amplitude Apm is constrained by assuming that the amplitude for each ray is

fixed within one PIT. The same constraining assumption is made for the navigation

data message bit value Dpm and the complex exponential carrier phase term θpm .

Apm = Am[n]∀n ∈ {pNp, pNp + 1, . . . , Np − 1 + pNp} (3.24)

Dpm = Dm[n]∀n ∈ {pNp, pNp + 1, . . . , Np − 1 + pNp} (3.25)

xpm = [xm[n]]
Np−1+pNp
n=pNp

(3.26)

fpm = [fm[n]]
Np−1+pNp
n=pNp

(3.27)

θpm = θm[n]∀n ∈ {pNp, pNp + 1, . . . , Np − 1 + pNp} (3.28)

Given the C/A-coded PRN sequence vector b (of size Nc = 1023) that is mod-

ulated within the GPS waveform to spread the signal spectrum, alignment of the

C/A-coded PRN sequence from one PIT p to the next will be forced. This is done by

simply assuming that the most prominent ray received in rpm (which is assumed to

be the LOS ray denoted as m = 0) is output from the code-aligning buffer with the

following constraint in place:

xp0 = [b0, . . . , bNc−1] ∀p (3.29)

This means that the first element of the coding vector xpm for the LOS ray would

contain the value of the first chip in the C/A-coded PRN sequence vector, and the

last element in xpm would contain the value of the last chip in the sequence vector.

This assumption is not generally going to be the case in the practical processing of

received signals, but is assumed for the purpose of this description.

This aligning function can be performed by simply processing the received GPS

data using a data surveying utility (such as a simple GPS software receiver tracking

loop), and then tracking points in the signal where x[n] = b0, while x[n− 1] = bNc−1.
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This function is performed the same way regardless of the value of PIT p.

3.3.5 Computation of the Search Grid from Received Data. This process

accepts rp and Np as inputs and outputs the search space Rp for the received signal

vector rp. The search space may also be referred to here as the search grid. Because

the same algorithm will be used for computing the search grid in several instances,

with variation potentially in the propagation delay (or alternately path length offset)

window size τwindow (or alternately δdwindow), the frequency window size fwindow, the

propagation delay grid spacing (or alternately path length offset grid spacing) ∆τ (or

alternately ∆(δd)) and the frequency grid spacing ∆f , the “grid” operator will be

defined to describe the search space operation, which yields an arbitrary search grid

S:

S = grid(s, τwindow, fwindow,∆τinput,∆finput) (3.30)

where s is a vector of PIT size that is input into the search space computation opera-

tion. The input value ∆finput is the desired frequency grid spacing, as defined by the

user. The input value ∆τinput is the desired propagation delay grid spacing, as defined

by the user. The actual grid spacing of the search space, in both propagation delay

and frequency, will be no greater than the values input by the user for grid spacing.

Before explaining how the search grid is computed for the process outlined in

this section of the document, it is asserted that the search grid Rp for received PIT-

sized vector rp is computed as follows:

Rp = grid(rp, τwindow, fwindow,∆τinput,∆finput) (3.31)

3.3.5.1 Generalized Computation of the Search Space. This section

outlines how the “grid” operator is used to compute the search space before making

use of the operator to describe how the search space is computed. The search space

is described in GNSS literature [1] [143], though variations on the search grid may be

referred to in literature as the “ambiguity function” or “spectrogram.” The equations
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defining how search space is constructed for this research, as presented in (3.32) -

(3.47), are original work and have not been uncovered explicitly in literature. This

methodology for the search space design technique is inspired by discussion on the

subject found in [144].

The propagation delay window size τwindow is a user-dictated design choice. The

choice of τwindow = 2Tc is made for this process in order to obtain estimates of the

multipath rays adjacent to the LOS ray, in order to characterize the channel for the

local environment around the receiver. As described in Section 2.4.2, multipath much

more prominently affects receiver processing when a multipath ray is received with a

propagation delay of less than Tc, relative to the LOS ray. Since the delay between

the peak of a ray in the search space and the point where the ray is negligible in

power is Tc, the sum of Tc +Tc is used for the window size. However, this process can

easily be executed for any arbitrary choice of propagation delay without requiring any

changes to the algorithm. The conversion between τwindow and the path length offset

window size δdwindow is as follows:

δdwindow = cτwindow (3.32)

where c is the speed of light.

The frequency window size fwindow is a user-dictated design choice. The choice

of fwindow = 10 kHz is made because literature states [67] that Doppler shifts of up

to fwindow = 10 kHz can be observed in received signals.

The propagation delay grid spacing ∆τinput is a user-dictated design choice.

The choice of ∆τinput = Ts is made because this value of ∆τ corresponds with the

actual resolution afforded by the sample rate of the receiver. The conversion between

∆τ = Ts and the path length offset grid spacing ∆(δd) is as follows:

∆(δd) = c∆τ (3.33)
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The propagation delay grid spacing ∆τ that is actually used in computation of the

search grid is to always be no larger than the grid spacing specified by the user. The

equation for calculation of ∆τ is as follows:

∆τ =
2τwindow
Nτ − 1

(3.34)

where

Nτ = 2

⌈
max

(
fsτwindow,

τwindow
∆τinput

)⌉
+ 1 (3.35)

The frequency grid spacing ∆f that is actually used in computation of the

search grid is to always exceed the grid spacing dictated by the user. The smaller the

grid spacing, the better the initial estimate of the Doppler frequency offset that can

be made for each ray in the PIT, thus the grid spacing choice of ∆finput = 10 Hz.

The search grid can be computed several ways, generally making use of a fast Fourier

transform (FFT). Therefore, the potential use of the FFT will be considered when

computing ∆f , but will not be considered when presenting the general form for the

search grid in (3.41). The equation for calculation of ∆f is as follows:

∆f =
fs
Nfft

(3.36)

where

Nfft = max

(
Ns, 2

(⌈
log2

(
fs

∆finput

)⌉))
(3.37)

where Ns is the size of the data vector s input to the “grid” operation and d•e indicates

a ceiling rounding operation (rounding up to the nearest integer on the real number

line more than the value contained in the modified brackets). Note that the function

expressed with this equation is designed to make use of the computational efficiency

afforded the FFT function when input vectors to an FFT function are of a length

equal to a power of two.
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The fast Fourier transform algorithm “fft” will not be further described in this

prospectus, other than to say that the following operator is used to denote the FFT

operation, where sf is the vector output of the FFT operation:

sf = fft(s, Nfft)f∈[flow,fhigh] (3.38)

where Nfft is the number of points in the input vector in the FFT, and is as expressed

in (3.37). The expression f ∈ [flow, fhigh] denotes the range of frequencies, between

flow and fhigh, for which data will be output in sf . Put another way, the vector

output from an FFT operation is associated with a range of frequencies as follows:

f ∈ [−fs/2, fs/2). The subscript to the fft operator is used to denote that the range of

frequency-domain points output in sf is limited to [flow, fhigh], rather than the entire

range that would be output were the FFT not constrained. The number of points

in the FFT whose frequencies are in the range f ∈ [flow, fhigh] is denoted Nf . The

following vector γ is defined to be the frequency values for each column in the search

space:

γ = [γz]
Nf−1
z=0 , γz ∈ [flow, fhigh] (3.39)

The code delay vector xs for code delay τs is defined as follows:

xs(τs) =

[
b

[⌊
Nc

(
wTs − τs
NcTc

−
⌊
wTs − τs
NcTc

⌋)⌋]]Ns−1

w=0

, b ∈ {−1,+1} (3.40)

where τs is an arbitrary propagation delay input into the expression, b[•] is an el-

ement of the PRN sequence vector b designated by the natural number inside the

brackets,b•c indicates a floor rounding operation (rounding down to the nearest in-

teger on the real number line less than the value contained in the modified brack-

ets) ,Nc is the number of chips in the PRN sequence, Tc is the chip duration (so

Tc = 0.001/Nc = 0.001/1023 seconds for GPS C/A code), and Ns is as used in (3.37).

The search space computation operator “grid” and the output of the “grid”

operator, S, is defined as follows, where the “grid” operator for S is first presented in

90



(3.30) to generally relate the “grid” operator to (3.31):

S = grid(s, τwindow, fwindow,∆τinput,∆finput)

=


S(β0, γ0) S(β0, γ1) · · · S(β0, γNf−1)

S(β1, γ0) S(β1, γ1) · · · S(β1, γNf−1)
...

...
. . .

...

S(βNτ−1, γ0) S(βNτ−1, γ1) · · · S(βNτ−1, γNf−1)


Nτ×Nf

(3.41)

where Nτ is the size of the vector of code delays considered in S, thus the number of

rows in S, and is equal to the size of the following vector β defining the code delay

values for each row in the search space:

β = [−τwindow,−τwindow + ∆τ,−τwindow + 2∆τ, . . . , τwindow]T (3.42)

=
[
[βy]

Nτ−1
y=0

]T
(3.43)

To compute S(βy, γz), the following equation is used:

S(βy, γz) =

Si(βy, γz) + jSq(βy, γz), s ∈ C

2 (Si(βy, γz) + jSq(βy, γz)) , s ∈ R
(3.44)

where

Si(βy, γz) =
1

Ns

Ns−1∑
w=0

((Re(sw) cos(φsw(γy)) + Im(sw) sin(φsw(γy)))xsw(βy)) (3.45)

Sq(βy, γz) =
1

Ns

Ns−1∑
w=0

((Im(sw) cos(φsw(γy))− Re(sw) sin(φsw(γy)))xsw(βy)) (3.46)

and

φsw(γy) = 2π(fIF + γy)Tsw (3.47)
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The multiplication by two of individual elements in S when s ∈ R in (3.44) is

required to obtain proper amplitude estimates for individual ray waveforms in S, as

signal power is halved when only the real-valued portion of rp is decomposed, versus

when s ∈ C.

3.3.6 Estimation of the Initial Search Grid Peak Location. In the case

where the ensemble index ε = 0, this process accepts Rp as an input and outputs the

comparison matrix χpε and the row and column indices corresponding to the element

in χpε that has the highest magnitude. In cases where ε > 0, the estimate search

grid output from the prior search space decomposition (ε− 1), R̂pε−1 , is additionally

input. R̂pε is the search grid computed from the summation of the discrete time-

domain vectors associated with all previously obtained ray estimates. R̂pε contains

aggregated search grid information for ε previously obtained ensembles.

In Section 3.3.5, the number of rows in the search space matrix Rp is established

to be Nτ and the number of columns in Rp to be Nf . R̂pε−1 is additionally asserted

in this process to be of the same size, and that the frequency and code phase values

of element positions shared between the two matrices are the same. The comparison

matrix χpε is now defined as follows:

χpε =

Rp − R̂pε−1 , ε > 0

Rp, ε = 0

(3.48)

Defining χpε as shown in (3.48) simply provides a means by which the received

search space is compared with the most recently computed search space of the sum

of estimated multipath rays. As ε increases, the average magnitude of each element

of χpε should decrease, if multipath ray estimates are properly obtained. The size

of χpε is equal to the sizes of both Rp and R̂pε−1 , and the indices y and z are used

to denote the row number and the column number, respectively, for each element in

each of these three matrices.
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To obtain ypeak and zpeak, the following operation is executed:

(ypeak, zpeak) = arg max
y,z

{∣∣χpε(y, z)
∣∣Nτ−1

y=0

}Nf−1

z=0
(3.49)

When multiple decomposition iterations are executed (when ε > 0), there may

be a desire to bound initial Doppler frequency and propagation delay parameter out-

puts to a range with some proximity to the parameter outputs from the first iteration.

The intent of this would be to focus the decomposition process on a region within the

search grid where decomposition is to be emphasized. When ε > 0, the decomposition

outputs f̂p0 = f̂p00
and τ̂ p0 = τ̂p00

are available to the decomposition processor. These

parameter outputs are used in constructing the limits within which initial Doppler

frequency and propagation delay estimates are bounded. Parameter estimation is

then performed using the following modification to the operation in (3.49):

(ypeak, zpeak) = arg max
y,z

[{∣∣χpε(y, z)
∣∣ymax

y=ymin

}zmax

z=zmin

]
(3.50)

where

ymin = arg min
y

[
|βy − τmin|Nτ−1

y=0 , βy ≥ τmin

]
(3.51)

ymax = arg min
y

[
|βy − τmax|Nτ−1

y=0 , βy ≤ τmax

]
(3.52)

zmin = arg min
z

[
|γz − fmin|

Nf−1
z=0 , γz ≥ fmin

]
(3.53)

zmax = arg min
z

[
|γz − fmax|

Nf−1
z=0 , γz ≤ fmax

]
(3.54)

The carrier frequency trial parameter range boundaries are fmin = f̂p0 − 1.1/TPIT

and fmax = f̂p0 + 1.1/TPIT , where TPIT is the pre-detection integration period (PIT).

The propagation delay trial parameter range boundaries are τmin = τ̂ p0 − 1.1Tc and

τmax = τ̂ p0 + 1.1Tc. These boundaries have been selected to focus the decomposition

algorithm on regions within the search grid where, if present, the received GNSS civil

signal and multipath content is reasonably assured to be contained. Furthermore,
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this is the region within the search grid where the impact of multipath has the most

consequence, in terms of pseudorange measurements [9].

3.3.7 Estimation of Initial Parameters. This process accepts χpε , ypeak, and

zpeak as inputs and outputs the initial estimate of the ray waveform amplitude Ãpε ,

the initial estimate of the Doppler frequency offset f̃pε , the initial estimate of the

propagation delay τ̃pε , and the initial estimate of the carrier phase φ̃pε . All of these

estimates are for the εth ray in ensemble ε.

To obtain initial estimates for the ray waveform amplitude Ãpε , the Doppler

frequency offset f̃pε , the propagation delay τ̃pε , and the carrier phase φ̃pε , the following

four equations are used:

Ãpε =
∣∣χpε(ypeak, zpeak)

∣∣ (3.55)

τ̃pε = βypeak (3.56)

f̃pε = γzpeak (3.57)

φ̃pε = ∠χpε(ypeak, zpeak) (3.58)

where ∠ denotes the phase angle computation, which is the same as the four quadrant

arctangent operation tan−1(imag(χpε(ypeak, zpeak))/real(χpε(ypeak, zpeak))).

3.3.8 Decomposition of the Search Space. This process accepts either Ãpε ,

f̃pε , τ̃pε , and φ̃pε (in cases when ε = 0) or Ãpε , f̃pε , τ̃ pε , and φ̃pε (in cases when

ε > 0). Output from this process are the final ray ensemble parameter estimates

associated with r̂pε : the peak amplitude estimates Âpε , the frequency estimate f̂pε ,

the propagation delay estimates τ̂ pε , and the carrier phase estimates φ̂pε . Estimates

are obtained for each of the ε+ 1 rays in ensemble ε.

Ãpε , f̃pε , τ̃ pε , φ̃pε , Âpε , f̂pε , τ̂ pε , and φ̂pε are defined as follows:

Ãpε =
[
Âpε−1 , Ãpε

]
(3.59)
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f̃pε =
[
f̂pε−1 , f̃pε

]
(3.60)

τ̃ pε =
[
τ̂ pε−1 , τ̃pε

]
(3.61)

φ̃pε =
[
φ̂pε−1

, φ̃pε

]
(3.62)

where

Âpε =
[
Âpεm

]ε
m=0

(3.63)

f̂pε =
[
f̂pεm

]ε
m=0

(3.64)

τ̂ pε =
[
τ̂pεm

]ε
m=0

(3.65)

φ̂pε =
[
φ̂pεm

]ε
m=0

(3.66)

Figure 3.3 illustrates the flowchart outlining the process used to decompose the

search space. This flowchart involves the execution of several subprocesses, corre-

sponding with the sections in this section, where discussion of the specifics of each

of these subprocesses is provided. These subprocesses are as follows: defining of the

boundaries for the ranges of trial parameter values (Section 3.3.8.1), computation of

the search grid for received data that will be used in the decomposition subprocess

(Section 3.3.8.2), computation of the trial estimate search grid (Section 3.3.8.3), com-

parison of the received and trial estimate search grids (Section 3.3.8.4), computation

of the error between the received and trial estimate search grids (Section 3.3.8.5), and

generation of new trial parameters (Section 3.3.8.6).
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Figure 3.3: Flowchart illustrating the search space decomposition process. Pro-
cesses are outlined in this section, with exceptions in cases where the flowchart process
label is self-explanatory, such as “g = g + 1.” The section number for the discussion
corresponding with each block is provided in the flowchart.
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3.3.8.1 Define Boundaries for Trial Parameters. This subprocess

accepts either Ãp0 , f̃p0 , τ̃p0 , and φ̃p0 (in cases when ε = 0) or Âp0 , f̂p0 , τ̂ p0 , and φ̂p0

(in cases when ε > 0). Output from this process are boundary values (both minimum

and maximum) for the trial parameters used to generate the trial ray waveforms being

considered. Parameter boundaries are output for the peak amplitude (Amin and Amax),

the carrier frequency (fmin and fmax), the propagation delay (τmin and τmax), and the

carrier phase (φmin and φmax). Also made available is Np.

This subprocess makes use of the same boundaries as those used for the SAGE-

based decomposition process, and are defined in Section 2.6.3.1. The boundaries for

ftrial and τ trial defined in (2.47) - (2.48) are applied in this subprocess as well, and

are restated in this section of the dissertation for convenience.

This subprocess is used to simply define the ranges from which trial parameters

for the peak amplitude Atrial, the carrier frequency ftrial, the propagation delay τ trial,

and the carrier phase φtrial in the decomposition process may be obtained. These

ranges are defined as follows:

Atrial ∈ [Amin, Amax] (3.67)

ftrial ∈ [fmin, fmax] (3.68)

τ trial ∈ [τmin, τmax] (3.69)

φtrial ∈ [φmin, φmax] (3.70)

where trial parameter vectors Atrial, ftrial, τ trial, and φtrial generated using simulated

annealing are expressed as follows:

Atrial = [Atrialm ]εm=0 (3.71)

ftrial = [ftrialm ]εm=0 (3.72)

τ trial = [τtrialm ]εm=0 (3.73)
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φtrial = [φtrialm ]εm=0 (3.74)

In this research, these boundaries are defined as follows: Amin = 0 and Amax =

max{|rp|}. This range is set to simply dictate in generation of trial parameters that

the peak amplitude of the ray waveform must not be outside the range of possible

values found in the received data vector. Because of the signal to noise ratio of GPS

data recorded using a software receiver, this range is appropriate, since peak noise

amplitude values will almost certainly exceed the peak amplitude of a GPS waveform.

For some simulation circumstances, however, Amax may need to be modified. The

carrier frequency parameter range boundaries and the propagation delay parameter

range boundaries are defined previously in Section 3.3.7. These same boundaries are

employed for this subprocess. The carrier frequency trial parameter range boundaries

are fmin = f̃p0 − 1.1/TPIT and fmax = f̃p0 + 1.1/TPIT (in cases when ε = 0) or fmin =

f̂p0 − 1.1/TPIT and fmax = f̂p0 + 1.1/TPIT (in cases when ε > 0). In cases when ε > 0,

fmin and fmax are scalars, since f̂p0 = f̂p00
(only one ray waveform is parameterized

in the estimate waveform generated from the initial ensemble, since the highest ray

index for an ensemble is equal to the ensemble index itself). The propagation delay

trial parameter range boundaries are τmin = τ̃p0−1.1Tc and τmax = τ̃p0 +1.1Tc (in cases

when ε = 0) or τmin = τ̂ p0 − 1.1Tc and τmax = τ̂ p0 + 1.1Tc (in cases when ε > 0). In

cases when ε > 0, τmin and τmax are scalars, since τ̂ p0 = τ̂p00
. The carrier phase trial

parameter range boundaries are φmin = −2π and φmax = 2π. This range is chosen to

ensure the true value of the carrier phase falls in the range, and to account for the

circular, rather than linear, nature of carrier phase values (a carrier phase of −π is

equal to a carrier phase of π).

3.3.8.2 Received Data Search Grid Computation. This subprocess

accepts rp and Np as inputs and outputs the search grid to be used in the search

space decomposition Rs.

Note that Rs is distinct from Rp. This is a design choice that has been made for

this research, as the initial estimate used in the search space decomposition process
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is required to be relatively accurate, thus the use of tight grid spacings. The search

grid Rs is used to obtain the estimate for the key parameters in an iterative process.

The tighter the grid spacing of the search grid, the greater the computational require-

ment. Therefore, the construction of these two search grids is decoupled to ensure the

simultaneous accuracy of initial estimates while still retaining the ability to perform

the search space decomposition in a reasonable timeframe.

The search grid Rs used in the stochastic search process is computed as follows:

Rs = grid
(
rp, τwindow, fwindow,∆τinput, [∆finput]Nfft=Nfinput

)
(3.75)

where τwindow = 2Tc (as before), fwindow = 10 kHz (as before), ∆τinput = Ts (as

before), and the frequency grid spacing ∆fs is such that the number of points in the

FFT used to compute the search grid is equal to Nfinput . The equation for Nfinput is

as follows:

Nfinput = 2λ, λ =

⌈
log2

(
max

(
fs
Np

,
2

3NpTs

))⌉
(3.76)

Note that (3.36) is used in the computation of ∆fs. The number of code delay values,

thus the number of rows in the search grid, is denoted Nτs . The number of frequency

values, thus the number of columns in the search grid, is denoted Nfs .

An additional self-explanatory subprocess following the computation of the re-

ceived data search grid is the initialization of the trial iteration index g = 0 and the

best error computation Ebest =∞.

3.3.8.3 Compute Trial Estimate Search Grid. This process accepts

Atrial, ftrial, τ trial, and φtrial as inputs and outputs the search grid for the trial

estimate Rtrial.

In the original publication outlining SDPA [141], the search grid was gener-

ated through the computation of the discrete time waveform rtrial and the direct

transformation of rtrial to the search grid Rtrial. However, this method is relatively

computationally intensive, and is dramatically computationally outpaced by modify-
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ing a search space-domain model found in literature [145] that can be used to obtain

an approximation to Rtrial that follows:

Rtrial ≈ grid (rtrial, τwindow, fwindow,∆τinput,∆finput)

≈


Rtrial (β0, γ0) Rtrial (β0, γ1) · · · Rtrial

(
β0, γNf−1

)
Rtrial (β1, γ0) Rtrial (β1, γ1) · · · Rtrial

(
β1, γNf−1

)
...

...
. . .

...

Rtrial (βNτ−1, γ0) Rtrial (βNτ−1, γ1) · · · Rtrial

(
βNτ−1, γNf−1

)


(3.77)

where

Rtrial (βy, γz) =
ε∑

m=0

[Atrialmsinc (m, z) %(m, y) exp (j(π (ftrialm − γz)TPIT + φtrialm))]

(3.78)

sinc (m, z) =


sin (π(ftrialm−γz)TPIT )

π(ftrialm−γz)TPIT
, ftrialm − γz 6= 0

1, ftrialm − γz = 0

 (3.79)

%(m, y) ≈

 1−
∣∣∣ τtrialm−βyTc

∣∣∣ , |τtrialm − βy| ≤ Tc

0, |τtrialm − βy| > Tc

 (3.80)

The same grid parameters used to define the received search grid Rs in (3.75) are

used to define the trial estimate search grid Rtrial in (3.77).

3.3.8.4 Compare Received and Estimate Search Grids. This subpro-

cess accepts Rs and Rtrial as inputs and outputs the comparison matrix χtrial. χtrial

is computed using the following equation:

χtrial = Rs −Rtrial (3.81)

3.3.8.5 Compute Estimate Error. This subprocess accepts χtrial as an

input and outputs the trial estimate error Etrial associated with the trial parameters.

100



Etrial is computed using the following equation:

Etrial =

√√√√ 1

NτsNfs

Nτs−1∑
y=0

Nfs−1∑
z=0

|χtrial(y, z)|
2 (3.82)

The decision point “Is Etrial < Ebest” is used to determine whether or not the

current error Etrial is superior to previous error values. If this is the case, the param-

eters for the best estimate are asserted as the current parameters in the subsequent

subprocess, denoted “Ebest ← Etrial, Abest ← Atrial, τ best ← τ trial, fbest ← ftrial,

φbest ← φtrial”.

Regardless of whether or not Etrial < Ebest, the iteration index g is then incre-

mented in the process that follows these operations, and is denoted “g = g + 1”.

The decision point “Is g ≤ gmax” is used to determine whether further iterations

of trial parameter generation and comparison with received data shall take place.

If g ≤ gmax, then further iterations occur, starting with the generation of new trial

parameter values, as outlined in Section 3.3.8.6. Otherwise, the best estimates are

asserted as the final parameters. In this process, the number of iterations used is

typically gmax = 1000 when using simulated annealing to generate new trial parameter

values, though gmax = 1000 is an arbitrary value typically used for the number of

iterations in generic simulated annealing literature. The use of a ceiling on the number

of trial parameter iterations permitted the algorithm is partially a particular quality

of simulated annealing, but capping the maximum number of permitted iterations is

usually available to other stochastic optimization methods.

The process to assert the best estimates as the final estimates is denoted “Âpε ←

Abest, f̂pε ← fbest, τ̂ pε ← τ best, φ̂pε ← φbest”. Note that final estimate values will

always be output from the search space decomposition process, regardless of the

quality of the estimate. Upon assertion of final parameter values, the search space

decomposition process is complete.
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3.3.8.6 Generate New Trial Parameter Values. This subprocess ac-

cepts g as an input and outputs new values of Atrial, ftrial, τ trial, and φtrial. There are

different means by which to compute trial parameters, depending on the stochastic

search and optimization method used. This research makes use of simulated annealing

for selection of trial parameters. Section 2.5.1 discusses the theory behind simulated

annealing. Simulated annealing is made available to users practically in the Matlab

global optimization toolbox, and has been employed in this research to serve as the

computational backbone for trial parameter generation. Trial parameter values gen-

erated using the simulated annealing function are output for computation of the trial

estimate search grid, discussed in Section 3.3.8.3.

3.3.9 Computation of the Estimate Search Space. This process accepts Âpε ,

f̂pε , τ̂ pε , and φ̂pε as inputs and outputs the estimate search grid R̂pε . To compute

R̂pε , the estimate discrete time-domain waveform r̂pε must first be computed. To do

this, the following equation is used:

r̂pε =
ε∑

m=0

r̂pεm (3.83)

where

r̂pεm =


Âpεm x̂pεm ◦

[
exp

(
j
(

2π(fIF + f̂pεm )Tsw + φ̂pεm

))]Np−1

w=0
, rp ∈ C

Re

{
Âpεm x̂pεm ◦

[
exp

(
j
(

2π(fIF + f̂pεm )Tsw + φ̂pεm

))]Np−1

w=0

}
, rp ∈ R

(3.84)

and the computation of x̂pεm makes use of (3.40) as follows:

x̂pεm = xs
(
τ̂pεm

)
(3.85)

To compute the search grid R̂pε , the following equation is used:

R̂pε = grid(r̂pε , τwindow, fwindow,∆τinput,∆finput) (3.86)
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3.3.10 Comparison of Received and Estimate Search Spaces. This process

accepts Rp and R̂pε as inputs and outputs the comparison matrix χpε .

The equation used to compute χpε is as follows:

χpε = Rpε − R̂pε (3.87)

This process is executed distinctly from the comparison subprocess described in

Section 3.3.8.4 as part of the search space decomposition process. While the result of

the comparison process in Section 3.3.8.4 would yield a similar result, the process de-

scribed above in this section is different in that the search grids denoted χpε , Rpε , and

R̂pε may use a different propagation delay grid spacing ∆τ and a different frequency

grid spacing ∆f from that used in Section 3.3.8.4.

3.3.11 Computation of the Estimate Error. This process accepts χpε as an

input and outputs the estimate error Epε . The error Epε is computed as follows:

Epε =

√√√√ 1

NτNf

Nτ−1∑
y=0

Nf−1∑
z=0

∣∣χpε(y, z)
∣∣2 (3.88)

The decision point “Is ε = 0” is used to determine whether the first, or LOS,

ray is being considered. If so, the estimate parameters output from the search space

decomposition are taken as is to be the estimate parameters for the LOS ray. If

ε > 0, the algorithm advances to another decision point, denoted “Is Epε ≤ Epε−1”.

This decision is made to determine if the current ensemble of ray parameter estimates

improves the global estimate that makes use of all ray parameters within ε obtained

using the decomposition algorithm. Therefore, if the parameter estimates associated

with ε improve or remain the same in error relative to the estimates associated with

ensemble ε− 1, the ensemble is declared to be a valid parameterization, and the ray

parameters are output to the ray database, as discussed in Section 3.3.12. If the

ensemble does not reduce or match the error from the previous ensemble, then the
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ensemble is not considered to be valid, the ensemble is discarded, and other regional

maxima are considered, as discussed in Section 3.3.14.

3.3.12 Output of Parameters to the Ray Database. This process accepts

Âpε , f̂pε , τ̂ pε , and φ̂pε as inputs and does not output anything. The ray database

is used to simply store estimate parameters for use in inter-PIT algorithms. The

whole point of the decomposition algorithm is to extract these parameters, eventually

yielding this database. Using this database, multipath rays present in more than one

PIT may be studied.

3.3.13 Computation of the Stopping Criteria Statistic. This process accepts

χpε as an input and outputs the stopping criteria statistic Fpε . Fpε can be described as

a peak signal content magnitude to noise power comparison parameter. The method-

ology behind employment of the stopping criteria is available in [142], but is explained

in this section as well. Fpε is computed using the cumulative distribution function

(cdf) of the Rayleigh distribution as follows [146]:

Fpε = 1− exp

(
−
ξ2
pε

2σ2
χ

)
, ξ ≥ 0 (3.89)

To obtain ξpε , (3.50) is used to determine the initial Doppler frequency and

propagation delay parameters, where ymin and ymax bind the indices considered in χpε

to those corresponding with the following condition: βymin
≤ τ̂p00

≤ βymax . zmin and

zmax bind the indices considered in establishing ξpε to those corresponding with the

following condition: γzmin
≤ f̂p00

≤ γzmax . ξpε is then obtained using the following

equation:

ξpε =
∣∣χpε (ypeak, zpeak)

∣∣ (3.90)

The carrier frequency trial parameter range boundaries are fmin = f̂p0 − 1.1/TPIT and

fmax = f̂p0 +1.1/TPIT , same as those used in Section 3.3.7. The propagation delay trial

parameter range boundaries are τmin = τ̂ p0 − (Tc + 9× 10−7) and τmax = τ̂ p0 + (Tc +
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9× 10−7). Multipath signal content is expected to be delayed at most by 1.8× 10−6

sec of the LOS ray, per findings outlined in [70] and applied per Section 4.2.2.5, thus

the use of this value in setting the boundary conditions for the propagation delay.

To obtain σχ, it is assumed that there is no signal content present outside the

boundary conditions outlined in the previous paragraph. The complex values of all the

elements in χpε from grid points with indices corresponding with Doppler frequency

or propagation delay values outside these boundaries are concatenated into a single

vector. The standard deviation σχ of either the real or imaginary components is

then computed. Given the assumption that this noise content originates from circular

complex AWGN, the standard deviation of the real components should be equal to

the standard deviation of the imaginary components.

Upon computation of Fpε , the stopping criteria is then applied using the follow-

ing decision criteria:

Fpε

Continue

≷

Halt

Υ (3.91)

where Υ is the stopping criteria threshold. The stopping criteria threshold Υ is

determined through simulation. The results of simulation leading to the determination

of Υ are outlined in Chapter IV. If Fpε ≥ Υ, the ensemble index ε is incremented

(using the “ε = ε + 1” process), and then the next ensemble for the same PIT is

considered for decomposition, starting with estimation of the initial search grid peak

location discussed in Section 3.3.6. If Fpε < Υ, decomposition of the current PIT

is halted, the PIT index is incremented (p = p + 1), and the algorithm advances

to the next PIT. If there are no more integration periods remaining to be processed

(p > pmax, where pmax is the PIT index of the last PIT to be processed in the data),

the algorithm is then halted.

3.3.14 Determination of Alternate Regional Maxima. This process accepts

χpε−1
as an input and outputs yalt and zalt. The absolute values of each of the elements
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in χpε−1
are evaluated to determine the locations of regional maxima. The Matlab

imregionalmax command can be used to determine these locations in software, and

the 8-neighborhood regional maxima are determined. If there are regional maxima

within χpε−1
that have not yet been considered for estimation, then the values of yalt

and zalt corresponding with the search grid locations where these peaks are found are

output from this process. The algorithm then continues with estimation of alternate

search grid peak locations, discussed in Section 3.3.15. Otherwise, the PIT index is

incremented (“p = p+1”) and the next PIT is decomposed. If “p > pmax”, there are no

more PIT-sized vectors of received data to consider, and the algorithm is completed.

3.3.15 Estimation of Alternate Search Grid Peak Locations. This process

accepts χpε−1
, yalt, and zalt as inputs and outputs ypeak and zpeak. These output row

and column indices for the search grid correspond with the element in χpε−1
that has

the highest magnitude. Upon output of ypeak and zpeak, initial parameter estimates

making use ypeak and zpeak take place, as found in Section 3.3.7. There may again be

a desire to bind values of ypeak and zpeak inside a boundary, as discussed in Section

3.3.6. In this case, (3.50) is once again used to limit ypeak and zpeak to values defined

by boundaries discussed in Section 3.3.6.

3.3.16 Algorithm Summary. This section outlines the algorithm used in this

research to decompose a GPS L1 C/A-coded signal with interference and noise added

to it that may be recorded by an RF receiver front end and made available for use in

a software receiver.

3.4 Comparison of Multipath Estimation Algorithms

Section 3.4.1 outlines similarities and differences between SDPA, SAGE, and

MEDLL, with emphasis on the details of the contrasts between SDPA and the SAGE-

based algorithm. Section 3.4.2 discusses the motivation for developing SDPA despite

the prior development of the SAGE-based algorithm.

106



Table 3.1: Comparison of MEDLL, SAGE, and SDPA characteristics
Comparison point MEDLL SAGE SDPA

Comparison domain Time [114] Time [57] Time-frequency
Uses ML estimation Yes [114] Yes [57] No
Uses tracking loops Yes [114] Optional [102] No
Estimates ray AOA Yes [147] Yes [104] No
Ray count (M) considered Yes [114] No Yes
Known to be used commercially Yes [110] No No
Estimates all parameters Yes [54] No [57] Yes
simultaneously

3.4.1 Algorithm Comparison. Among GNSS receiver signal processing tech-

niques that explicitly estimate multipath ray waveform parameters to measure or

mitigate channel characteristics, SDPA is believed to be most closely comparable to

MEDLL and SAGE. Therefore, it is appropriate to explicitly consider comparison

and contrast points as part of the research outlined in this dissertation. Table 3.1

provides a comparison of MEDLL, SAGE, and SDPA.

All three of these GNSS receiver signal processing techniques explicitly estimate

direct path and multipath ray waveform parameters including the waveform ampli-

tude, the Doppler frequency, the relative propagation delay, and the carrier phase.

For all three techniques, these estimates are obtained on an integration period-by-

integration period basis.

All three of these techniques make use of some sort of interference cancellation

feature, where each of the ray waveforms present in received data are explicitly ac-

counted for, and may be deducted from the received waveform to obtain an estimate

of the sum of the direct path ray waveform and the received noise.

All three of these techniques make use of some variation on the following iterative

sequence: 1) initialization, 2) cancellation of successive multipath correlations, and

3) convergence (repeating step two until a convergence criteria is satisfied) [57] [110].

MEDLL fundamentally relies upon the estimation of ray waveform parameters

through the minimization of the correlation output (or RMS error) between a sum
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of ray waveform estimates (reference signals) and the received signal [54]. Solving

for ray waveform parameter estimates is completed by setting the partial derivatives

(with respect to the parameter of interest, be it ray waveform amplitude, propagation

delay, or initial carrier phase of ray waveform equations) equal to zero [54].

As discussed in Section 2.6.1, SAGE relies upon the iterative use of the E-

step and the M-step until parameter estimates converge. individual parameters for

individual rays are serially considered as part of the SAGE algorithm, as opposed to

the use of partial derivatives found in MEDLL.

The comparison domain is the domain where received and reference waveform

comparisons occur. In the case of MEDLL and SAGE, waveform comparison in the

form of correlation between received and reference signals occurs in the discrete time

domain. In the case of SDPA, comparison between received and reference signals

occurs in the time-frequency search space (“search grid”).

The use of ML estimation provides parameter estimates that maximize the joint

PDF of sample data. Because of this, ML estimation provides the optimal means for

estimating parameters in the absence of prior knowledge [110]. Both MEDLL and

SAGE make use of ML estimation, whereas SDPA uses stochastic optimization (with

simulated annealing) to generate trial parameter values.

MEDLL explicitly uses a DLL tracking loop for every path, either direct path or

multipath, to generate propagation delay estimates in parallel. Use of tracking loops

has been considered for use in SAGE as well. The use of tracking loops generally

improves parameter estimation, but making use of feedback from previous results

in the computation of current estimates may bias current and future loop outputs

erroneously (in the case where past measurements were poorly estimated).

The use of MEDLL to directly perform estimation of the angle of arrival (AOA,

in azimuth and elevation as received using an antenna array) of particular direct

path and multipath rays as part of a multipath mitigation methodology is presented

in [147]. The use of SAGE in a GNSS receiver where the angles of arrival of individual
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multipath rays are estimated has been considered, and found to improve multipath

parameter estimation performance [104]. This aspect of receiver processing has not

been considered for SDPA.

All three of these techniques require that for the integration period of interest,

the number of rays be specified. Therefore, there must be some means established

by which the number of multipath rays is provided to all of these algorithms. For

MEDLL, the maximum likelihood estimate of the number of multipath rays can be

computed. For SDPA, a stopping criteria is researched which can be applied to both

SDPA and SAGE. More background into this requirement is provided in Section 2.8.3.

For MEDLL and SDPA, all ray waveform parameter estimates are obtained si-

multaneously in processing. With SAGE, the propagation delay is first obtained, then

the Doppler frequency, and then the ray waveform amplitude and initial carrier phase

are essentially obtained simultaneously (though the order between the propagation

delay and the Doppler frequency can be varied).

As discussed in Section 2.7, MEDLL requires the use of a bank of correlators

integrated into delay locked loops by definition. The presence of these loops yields the

possibility that estimation errors from prior correlation operations may yield errors

in the current estimation process. The presence of these loops works generally to

reduce errors in the MEDLL architecture, but the intent of SDPA is to have a pa-

rameter estimation algorithm that does not rely upon estimates from prior iterations

in the estimation of parameters being considered presently within the architecture.

Therefore, further comparison between SDPA and MEDLL is abandoned in favor of

limiting comparisons to those between SDPA and SAGE.

The flowcharts illustrated in Figures 2.1 and 3.3 for SAGE and SDPA, respec-

tively, highlight the similarities and difference between the two approaches to signal

decomposition. Both SAGE and SDPA make use of some sort of interference can-

cellation feature. In the case of SAGE, interference cancellation takes place when

interfering ray waveforms are subtracted from received data (Section 2.6.3.2). For
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SDPA, estimate rays are summed so that every multipath ray for the ensemble is

considered simultaneously. These approaches are equivalent, so SAGE and SDPA are

similar in this regard.

Ray waveforms are processed sequentially in SAGE, whereas they are pro-

cessed simultaneously in SDPA. SAGE makes use of discrete time-domain correla-

tion, whereas error values between time-frequency-domain transforms are computed

in SDPA. Parameters defining individual ray waveforms within a signal are obtained

sequentially in SAGE, whereas in SDPA parameters are obtained simultaneously. Pro-

cessing is halted when using SAGE when every parameter value for every estimate

ray waveform converges. In SDPA, processing is halted when either the stopping cri-

teria is satisfied or the error between the received and estimate search grids cannot

be further reduced, regardless of whether individual waveform parameters converge.

The most important point of contrast between SAGE and SDPA, the feature

that underpins the premise of the contribution to the body of knowledge in GNSS

multipath modeling made with this document, is that SAGE considers sequential

instances of correlation, with each instance using a single Doppler frequency value

and a single relative propagation delay value. This is equivalent to evaluating only

one discrete location in the search grid at a time. SDPA, on the other hand, forces

consideration of multiple points between received and estimate search grids with each

comparison of search grids. The received search grid will contain the frequency trans-

form of AWGN, and this noise yields uncertainty in amplitude values resulting from

correlation in SAGE. The means by which SAGE obtains ray waveform amplitude

estimates does nothing to account for this uncertainty, as described in Section 2.6.3.5.

This uncertainty is moderated in SDPA. Therefore, in noisy environments, SDPA will

outperform SAGE in the reduction of error between true and estimate search grids

in specific cases. This insight spurs the research outlined in this document. This

distinction holds true between SDPA and MEDLL as well, as MEDLL is similar to

SAGE in this regard.
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3.4.2 Motivation for Developing an Alternative to the SAGE-based Decompo-

sition Technique. The motivation for developing SDPA is to make use of the

time-frequency signal processing capability made possible through the use of search

spaces. The search space intrinsically serves as a parallel correlator, whereas algo-

rithms such as SAGE make iterative use of the output of serial correlation operations.

Content within the search space is equivalent to correlator outputs for given Doppler

frequency and propagation delay offset values. Therefore, a parallel correlation al-

gorithm like SDPA makes use of much more information about the received signal

within a given iteration than a serial correlation algorithm such as SDPA.

There will be a trade-off in the use of a parallel versus serial correlation opera-

tion. The peak-seeking nature of a serial correlator like SAGE lends to the algorithm

avoiding parts of the search space where the signal to noise ratio is relatively low.

This avoidance means that signal content that has been corrupted by noise will not

impact parameter estimation. A parallel correlation algorithm like SDPA, on the

other hand, makes use of areas where the signal to noise ratio for a region within

the search space is low. Furthermore, SDPA is making use of more information than

SAGE for a given iteration. Making use of this information means that averaging

operations are conducted transparently within a parallel correlation operation. This

averaging creates a robustness of its own in instances when the signal to noise ratio is

poor throughout the search space. Therefore, it’s expected that SAGE-based search

space estimation will be superior to SDPA in cases when C/N0 is high over a fixed

integration period and that SDPA will outperform SAGE in cases when C/N0 is low.

This phenomenon can be shown analytically. Assume the received signal model

presented in (3.20) is applied in an arbitrary scenario with rp ∈ R and Mp = 0 (so no

multipath is present). This model makes use of an additive noise term ηp described

in (3.22). Assume ηp ∈ R. Furthermore, η[n] ∼ N(0, σ2
IF). The fundamental equation

relating the carrier to noise power ratio C/N0 to the ray amplitude Ap0 , the standard
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deviation of the noise σIF, and the sampling frequency fs is as follows [143]:

C

N0

=
A2
p0
fs

4σ2
IF

(3.92)

Now solving for Ap0 :

Ap0 = 2σIF

√
C/N0

fs
(3.93)

Given these equation, if σIF is arbitrarily fixed to a value equal to one and fs is

arbitrarily fixed to a value of 3.42 MHz (which is the intermediate frequency of the

TRIGR receiver downconverted by four), Ap0 can then be calculated for various values

of C/N0. Furthermore, given Ap0 , the highest possible magnitude for signal content

within the search space is Ap0/2 for rp ∈ R [2]. This value is also equal to the highest

possible amplitude computation for SAGE in the absence of noise, as described in

Section 2.6.3.5.

The Fourier transform of bandlimited AWGN ηp is a complex normally dis-

tributed signal [143]. The standard deviation of the real portion of the Fourier trans-

form of ηp, σn, is equal to the standard deviation of the imaginary portion of the

Fourier transform of ηp. The relationship between σn and σIF is as follows [143]:

σn =

√
σ2

IF

2Np

(3.94)

The magnitude of a complex normally distributed signal is Rayleigh distributed

[14], so F
(
ηp
)
∼ Rayleigh(σn). The expected value of the Rayleigh distribution is

equal to σn
√
π/2 [146]. To express this analytically, the following equation is used

to describe a search space position value or correlation output S(τ, f) using both the

signal and noise content:

S(τ, f) = SS(τ, f) + SN(τ, f), SS ∈ C, SN ∈ C (3.95)
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where SS(τ, f) is the signal content and SN(τ, f) is the noise content at search space

position (τ, f).

The value of SS(τ, f) is computed using the following equation, similarly to

(3.44):

SS(τ, f) = Si(τ, f) + jSq(τ, f) (3.96)

The expected value of SN(τ, f), E{SN(τ, f)}, is expressed as follows:

E{SN(τ, f)} =
σIF

2

√
π

Np

(3.97)

These equations express the relationship between signal and noise in the search

space or when computing amplitude using SAGE. This relationship is expressed using

the true value of τ and f (perfect estimation) to obtain the ratio between the signal

magnitude and the expected noise magnitude Λ.

Λ = 2

√
(C/N0)(PIT )

π
(3.98)

Figures 3.4 and 3.5 illustrate (3.98) for C/N0 ∈ [35, 50] dB-Hz and a 1 msec

integration period. The impact of noise is immediately apparent: the signal magni-

tude at the signal peak is relatively low relative to the expected magnitude of the

noise content. For a serial correlation algorithm like SAGE, even if the algorithm

is performing perfectly, the magnitude of noise content will be approximately half

the magnitude of signal content when propagation delay and Doppler frequency have

been perfectly estimated at C/N0 = 35 dB-Hz. For an iterative algorithm, errors in-

duced by this phenomenon may have a significant impact on the quality of parameter

estimates. These figures illustrate why multipath ray parameter estimation processes

may benefit from an approach that makes use of parallel correlation.

An algorithm that compares outputs of parallel correlators, such as SDPA, takes

advantage of the weak law of large numbers [146]. When the outputs of a large number
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Figure 3.4: Illustration of the ratio between the peak signal magnitude and the
expected magnitude of noise content when considering correct propagation delay τ
and Doppler frequency f . This ratio is the case for both true signal peak positions
in search spaces or as output from the SAGE amplitude computation. This figure is
computed using an integration period of 1 msec.

of correlators are considered simultaneously, the sample mean of both the real and

imaginary noise content will converge to the true mean of zero, since complex circular

AWGN in the frequency domain is independent and identically distributed with zero

mean and a fixed variance (thus wide sense stationary). This law of probability

justifies exploration of SDPA versus SAGE.

It is important to point out that SAGE makes use of maximum likelihood es-

timation, so in correlation cases where signal content dominates over noise content,

users should not expect SDPA to outperform SAGE. This is, after all, because SDPA

is making use of data from regions in the search space where noise content dominates

over signal content. As can be seen from Figure 3.5, the ratio of signal magnitude to

noise magnitude is significant in the case when C/N0 = 50 dB-Hz, so relative estima-
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Figure 3.5: Illustration of the ratio between the peak signal magnitude and the
expected magnitude of noise content when considering correct propagation delay τ
and Doppler frequency f . This ratio is the case for both true signal peak positions
in search spaces or as output from the SAGE amplitude computation. This figure
is computed using an integration period of 1 msec. For each ray magnitude, the
error bar centered by the highest position of the ray magnitude illustrates the ratio
of expected deviation brought about because of the noise content for a given value of
C/N0, relative to the peak signal magnitude (the center of the error bar).

tion error will not be as prevalent as that observed when C/N0 = 35 dB-Hz. Since

SDPA makes use of much more of the spectrum than SAGE in parameter estimation,

there are portions of the search space from which data is extracted even when very

little signal content is present, relative to the noise content. This may have the effect

of inducing estimate errors not experienced when using SAGE. The solution to this

may be to weight correlator magnitudes from areas of greater concentration of signal

content more heavily than areas where there is limited signal content.
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3.5 Summary

This chapter provides a comprehensive description of SDPA. As part of this

discussion, motivation for the consideration of SDPA, versus a maximum likelihood

estimator such as SAGE, was presented.
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IV. Results and Analysis of Comparisons between SDPA-

and SAGE-based Decomposition

4.1 Introduction

SAGE appears to be the state of the art in the decomposition of GNSS signals

with the objective of estimating multipath parameters under the following conditions:

• Waveform amplitude, Doppler frequency, propagation delay offset, and carrier

phase are explicitly estimated for the direct path and each multipath ray.

• A tracking loop is not required in order to execute the SAGE-based algorithm,

in contrast to a technique like MEDLL.

Because of this, SAGE will be the primary point of comparison for SDPA.

As discussed in Section 2.6, the SAGE-based decomposition algorithm can be

inserted seamlessly into the SDPA architecture in order to provide a direct, fair com-

parison between the two methods. In order to demonstrate the effectiveness of SDPA

relative to the SAGE-based algorithm, a simulation scenario is constructed. This

simulation scenario is designed to replicate what is expected of the receiver hardware

and multipath environment in future research, particularly in an urban environment

where signals are collected by a TRIGR receiver mounted in an automobile. No claim

is made that SDPA will generally outperform SAGE-based decomposition, but this re-

search indicates that consideration of time-frequency domain-based signal processing,

such as that used in SDPA, may be appropriate in some scenarios.

This chapter of the dissertation presents results and analysis of performance

results between SDPA- and SAGE-based decomposition algorithms. Section 4.2 out-

lines the simulation scenario that is employed in order to obtain decomposition results

for comparison. Section 4.3 provides the decomposition results themselves in a com-

parative format. Section 4.4 provides analysis of the results obtained in Section 4.3.

117



4.2 Comparison Simulation Scenario

Simulations are employed to demonstrate the claim that SDPA offers in limited

and specific scenarios the ability to better reduce the RMS error between the true sig-

nal and the estimate signal when transformed to a time-frequency domain (the search

space) versus the SAGE-based decomposition algorithm. To justify this comparison

and claim, simulations are used. These simulations consist of the independent gen-

eration of 1000 data vectors of a 1 msec integration period for each of the following

values of C/N0: 35, 40, 41, 42, 43, 44, 45, and 50 dB-Hz. Decomposition occurs for

each of these data vectors using both SDPA- and SAGE-based decomposition. The

objective with these simulations is to demonstrate that SDPA exhibits better estima-

tion performance, in terms of minimization of the RMS error between the estimate

search space and the true (no noise) search space for all estimate ensembles obtained

when processing a PIT, relative to SAGE-based decomposition.

There are two sets of parameters that compose the specific simulation scenario

considered in this research—the receiver parameters for which simulated signals are

designed, and the multipath propagation model that has been developed for this re-

search. The receiver parameters are discussed in Section 4.2.1. The simulated signal

structure multipath propagation model is discussed in Section 4.2.2. Section 4.2.3

provides the specific parameters associated with the calculation of the search space

discussed in Sections 3.3.5 and 3.3.9. Section 4.2.4 discusses assumptions that are

made in decomposition and parameterization of simulated signals. These assump-

tions are made to reduce the computational overhead associated with the simulations

without compromising the integrity of the simulation results and findings.

4.2.1 Simulated Receiver Parameters. Future study into the topic area con-

sidered in this dissertation will make use of the TRIGR receiver. Therefore, TRIGR

parameters are considered in this research. Data sets received using the TRIGR are

typically recorded using the following parameters:

• Sampling frequency fs = 56.32 MHz

118



• Intermediate frequency fIF = 13.68 MHz

• 8-bit quantization

• Real-valued signals

The sampling frequency very quickly becomes computationally burdensome.

Therefore, downsampling of signals may make use of the following parameters instead

of those listed above. The following parameters are used in this research in place of

those listed above.

• Sampling frequency fs = 56.32/4 MHz = 14.08 MHz

• Intermediate frequency fIF = 13.68/4 MHz = 3.42 MHz

4.2.2 Simulated Signal Structure and Multipath Propagation Model. Signals

are simulated strictly using GPS C/A-coded waveforms, which have a chipping fre-

quency of 1.023 MHz. PRN 26 is arbitrarily used throughout all simulations, with

no waveforms making use of other PRN sequences present in any generated signals.

Therefore, all simulated signals consist strictly of the direct path ray, the multipath

rays, and AWGN. The integration period is strictly held to a duration of 1 msec for

every simulated signal generated for this research, so simulated data vectors of dura-

tion equal to 1 msec will be of length 14080 samples. Though only GPS C/A-coded

waveforms are considered in this chapter of the dissertation, the use of SDPA and

the simulation methodology discussed in this chapter are both generally applicable to

waveforms from other GNSS constellations discussed in Section 2.10 as well.

The integration period of 1 msec is used in this case primarily to expedite

simulation processing. However, there is a tradeoff to be made in the generalized

selection of the integration period. A larger integration period offers the advantage

of a processing gain, where signals will be exhibit an increased magnitude relative

to noise because of the use of coherent integration. While this advantage presents

an enticement, the disadvantage is that the use of the longer integration period has

the effect of reducing the magnitude of high frequency multipath signals relative to
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lower frequency multipath signals. This loss of high frequency multipath reduces

the ability of the algorithm to properly parameterize what is truly presented in the

received signal. Given this tradeoff, the research presented in this dissertation made

use of a smaller integration period with the intent of proper parameterization of high

frequency multipath content.

Literature on GNSS modeling in the urban environment discussed in Section

2.4.2.2 provides the basis for the multipath propagation model used in this research.

Papers published by researchers at DLR in particular are heavily leveraged to infer

realistic multipath waveform parameter values outlined as follows:

4.2.2.1 Number of ray waveforms. 20 multipath ray waveforms (in

addition one direct path waveform) are used for every PIT-sized data vector generated

in this research, as inferred by inspection from Figure 14 in [70]. Figure 14 in [70]

illustrates the number of echoes arriving at the receiver antenna at the same time

during a 15 minute drive through city streets. The figure illustrates the possibility of

up to 50 echoes arriving at the receive antenna simultaneously, but the mean value

is far fewer. The use of Mp = 20 in simulation represents an approximation of the

expected value through inspection of the figure, so this number is asserted in every

generated instantiation of rp.

4.2.2.2 Rician K-factor. The Rician K-factor is a ratio of the power

in the direct path ray to the power in the sum of multipath rays. A K-factor of one is

used in the generation of every PIT-sized data vector. Figure 11 in [70] illustrates a

histogram of the Rician K-factor exhibited in multipath rays leading to the inference

by inspection that a K-factor of one should be used. This is because the peak value

for the K-factor within the histogram is approximately one.

4.2.2.3 Amplitude of ray waveforms. The multipath ray waveform

amplitudes values are scaled relative to each other to correspond with models posited

by DLR [16]. For multipath ray m, the peak amplitude for the ray amplitude Am
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delayed by τm is expressed as follows:

Am(τm) = S0e
−δτm (4.1)

where S0 is the initial value of Am(τm) when τm = 0 and δ is the exponential decay

constant. S0 varies depending upon C/N0, so a numeric value won’t be provided here.

In the application of this model in simulations, δ = 2.410× 106. The value of δ used

in simulations conducted for this research has been obtained by analyzing simulation

outputs from the DLR land mobile multipath model software associated with [70] and

available at [148].

4.2.2.4 Scaling Multipath Rays to Satisfy the K-factor. Multipath rays

are scaled relative to the direct path ray to satisfy the ratio prescribed by the K-factor

as follows:

rpm = [rpm ]unscaled

√
PL
Pm

(4.2)

where [rpm ]unscaled is the version of rpm that has been generated before scaling. The

direct path signal power PL (the power of direct path ray rp0) and the multipath

waveform power Pm are expressed as follows:

PL ∼= var([rp0 ]unscaled) (4.3)

and

Pm ∼= var

(
M∑
m=1

[rpm ]unscaled

)
(4.4)

This approach to computation of PL and Pm found in (4.3) and (4.4) makes

use of the fact that the power present in a time-domain signal can be approximated

by summing the variance of the received signal with the square of the mean of the

received signal [3].
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4.2.2.5 Propagation delay offset distribution of rays. Each of the

multipath rays in each data vector are delayed, relative to the direct path ray, using

an exponential distribution. Use of this random distribution is in accordance with

the findings reported in [16]. The distribution is expressed as follows:

P (τm) =
1

µ
e−

τm
µ (4.5)

where µ = 0.225 × 10−6. This value of µ contrasts from that reported in [16] to

accommodate the characteristics of the model constructed by DLR and reported in

Figure 17 in [70]. µ is adjusted when using the exponential distribution to generate

a value of τm that approaches but does not exceed a propagation delay of 1.8× 10−6

sec, relative to the direct path ray.

4.2.2.6 Doppler frequency offset distribution of rays. The Doppler

frequency offset for individual rays is uniformly distributed in a range between -60

and 60 Hz around the Doppler frequency of the simulated direct path ray waveform

in every PIT. This simulation decision is inferred from Figure 18 in [70]. Figure

18 in [70] illustrates the Doppler frequency of echoes simultaneously present at the

receiver antenna as a vehicle travels through city streets. This figure illustrates the

possibility of receiving multipath waveforms that exhibit a Doppler frequency shift of

as much as 60 Hz. The use of a uniform distribution is inferred by inspection of the

figure.

4.2.2.7 Initial carrier phase distribution of rays. The initial carrier

phase for individual ray waveforms is uniformly distributed around the unit circle for

every ray waveform in every PIT, as discussed in Section 2.4.2.2 and per [16].

4.2.3 SDPA Search Space Parameters. In the construction of the search

spaces described in Sections 3.3.5 and 3.3.9, there are several parameters for which

values are chosen for this research: τwindow = 2Tc, fwindow = 10 kHz, ∆τinput = Ts, and
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∆finput = 10 Hz. τwindow is chosen to be equal to 2Tc to ensure that multipath that is

within Tc of the direct path signal, in terms of propagation delay, will be present in

the search space. The area of interest in this research, in terms of the multipath signal

relative to the direct path signal, is of a propagation delay within Tc of the direct path

signal. The frequency window size fwindow of 10 kHz may be wider than what would

be expected, but is used to account for large Doppler shifts and clock drifts, and is

used in accordance with [67]. ∆τinput is chosen to be equal to Ts because this value

provides the highest possible resolution (a smaller number does not contribute to the

resolution, as slices in the search space will simply be duplicated and a larger number

will cost the algorithm resolution). ∆finput is chosen to be equal to 10 Hz arbitrarily

with the awareness that relatively tight grid spacing offers better initial frequency

estimates, as described in Section 3.3.7.

4.2.4 Assumptions to Reduce the Computational Burden in Simulation. For

the simulations performed for the research outlined in this dissertation, there is an

ensemble index beyond which the error between the estimate search space and the

“true” (noise-free) search space will not be further reduced through more processing.

Continuing decomposition of the current integration period would beyond this point

is needless and time-consuming. To reduce the computational burden in simulation,

offline simulations are performed to determine the ensemble index for each value of

C/N0 at which decomposition of the received data for the current integration period

can be halted without impacting the results.

For C/N0 = 45 dB-Hz and a 1 msec integration period, 1000 independent trial

data vectors are generated and decomposed using both SDPA and SAGE. Decompo-

sition of this generated data led to the finding that the error between the estimate

and true search spaces is minimized within the first 17 ensembles. However, with the

exception of a single decomposition trial, the error between the estimate and true

search spaces is minimized within the first 10 ensembles. Therefore, it is assumed

that processing 12 ensembles will generally suffice in comparing SDPA and SAGE.
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Furthermore, since the number of ensembles required to reach the error minimum is

reduced as C/N0 is reduced, this assumption is made for simulations using values of

C/N0 less than 45 dB-Hz.

For C/N0 = 50 dB-Hz and a 1 msec integration period, 1000 independent trial

data vectors are generated and decomposed using both SDPA and SAGE. Decompo-

sition of this generated data led to the finding that the error between the estimate

and true search spaces is minimized within the first 17 ensembles. Therefore, it is

assumed this is the case generally. Simulations with C/N0 = 50 dB-Hz are halted

after processing 17 ensembles.

4.3 Comparison of Results between SDPA- and SAGE-based Decompo-

sition Techniques

Given the simulation scenario described in the previous section (to include the

assumptions made regarding the maximum number of ensembles required to obtain

the error minimum), 1000 independent trials are generated at each of the following

values of C/N0: 35, 40, 41, 42, 43, 44, 45, and 50 dB-Hz. SDPA and SAGE are inde-

pendently employed in the decomposition of a data vector of duration equal to 1 msec.

There are three performance metrics that are considered directly in the comparison

of SDPA and SAGE in the decomposition and parameterization of data. The first

metric is the proportionality of error minimization between SDPA and SAGE. The

second metric is the mean error minimum obtained by SDPA or SAGE. The third

is the median error minimum obtained by SDPA or SAGE. To obtain performance

measurements for each of these three metrics, trials are executed where SDPA and

SAGE are both independently employed to decompose the data associated with the

trial.

Figure 4.1 is a bar chart illustrating the results associated with the first metric,

the proportionality of error minimization between SDPA and SAGE. There are three

possible outcomes when each of the 1000 trials are evaluated. The first possibility is

the “invalid” result, where either SDPA or SAGE are unsuccessful in decomposing
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the region of the search space where direct or multipath content is present. This is

determined by whether or not parameter outputs obtained through decomposition

(using every ensemble processed for the trial) place a ray waveform at positions both

less than and greater than the peak of the true search space, in terms of both Doppler

frequency and path length offset. In other words, if the peak of the true search space

isn’t “bookended” in both Doppler frequency and path length offset by rays output

from the decomposition engine using both SDPA and SAGE, the decomposition trial

is considered to be invalid. To compare valid versus invalid results in this context is

really more a test of the acquisition performance of the decomposition engine, akin

to how GNSS signals are acquired in conventional receivers. However, reporting of

these results illustrate how realistic it is to attempt to decompose data at various

values of C/N0, therefore the results are retained and reported. If decomposition is

considered to be valid, then SDPA and SAGE are compared to determine which of

the two algorithms succeed in reaching the lower error value when comparing estimate

and true search spaces. If SDPA reaches the lower of the two error minima obtained

through use of the two algorithms, SDPA is credited with success, otherwise SAGE is

credited with success. It should by noted that these error minima are not necessarily

the global minimum that could possibly be achieved with an arbitrary estimation

algorithm, but only the best achieved with these two algorithms. Figure 4.1 illustrates

the finding that SDPA succeeds in reaches the error minimum more often than SAGE

for C/N0 ≤ 40 dB-Hz.

Figure 4.2 illustrates a comparison of the mean error minimum obtained using

both SDPA and SAGE. The error minimum for valid trials for either SDPA or SAGE

are averaged together and reported in this figure, as well as the standard deviation

associated with the error minimum values. Note that these error figures are normal-

ized. Each of the error minimum values for the valid trials for both SDPA and SAGE

are divided by the mean error minimum obtained using SAGE. Because these results

are normalized using SAGE error minimum results, the error minimum for SAGE

using each value of C/N0 is equal to one. This normalization enables a relativistic
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Figure 4.1: Illustration of proportionality of error minimization for C/N0 ∈
{35, 40, 41, 42, 43, 44, 45, 50} dB-Hz. The proportionality of instances for each value of
C/N0 where SDPA, versus SAGE, obtained the minimum error between the estimate
and true search spaces is displayed in blue. The proportionality of instances for each
value of C/N0 where SAGE, versus SDPA, obtained the minimum error between the
estimate and true search spaces is displayed in green. The proportionality of instances
for each value of C/N0 where decomposition results were invalid is displayed in red.
This bar chart illustrates that SDPA succeeds more frequently in reaching the error
minimum, versus SAGE, at C/N0 ≤ 40 dB-Hz.

comparison between SDPA and SAGE. Although standard deviations are provided

with error bars in this figure, it needs to be reported that the error minima are not

normally distributed, but actually appear to be Rice distributed in nature. Therefore,

the further use of standard deviation beyond this finding may not be advisable. This

figure illustrates that SDPA succeeds in reaching the lower mean error minimum,

versus SAGE, at C/N0 equal to 35 and 40 dB-Hz. Of note is the finding that the

standard deviation for error minimum value is widely varying, so decomposition of

one trial integration period may have a very different error minimum from the next.

Figure 4.3 illustrates a comparison of the median error minima obtained using

both SDPA and SAGE. The first and third quartiles are annotated in this figure as
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Figure 4.2: Comparison of the mean error minimum obtained using both SDPA
and SAGE for C/N0 ∈ {35, 40, 41, 42, 43, 44, 45, 50} dB-Hz. The mean error minimum
for SDPA is presented using blue asterisks. The mean error minimum for SAGE is
presented using green circles. The error bar illustrates the standard deviations for
both SDPA and SAGE. The blue error bar illustrates the standard deviation of the
error minima using SDPA, whereas the SAGE error bar is illustrated in green. This
figure illustrates that SDPA succeeds in reaching the lower mean error minimum,
versus SAGE, at C/N0 equal to 35 and 40 dB-Hz. The large standard deviation
for both SDPA and SAGE indicates that the error minimum varies widely from one
integration period to the next.

well for both SDPA and SAGE for each value of C/N0. The normalization associated

with the results illustrated in Figure 4.2 is retained for these results as well. This

figure illustrates that SDPA succeeds in reaching the lower median error minimum,

versus SAGE, at C/N0 ≤ 40 dB-Hz. Of note is the finding that the range between the

first and third quartiles in error minimum values is widely varying, so decomposition

of one trial integration period may have a very different error minimum from the next.

Further indication that SDPA performs better than SAGE at C/N0 ≤ 40 dB-Hz is

the shift in which algorithm has the more desirable third quartile (upper) error bar.
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Figure 4.3: Comparison of the median error minima obtained using both SDPA and
SAGE for C/N0 ∈ {35, 40, 41, 42, 43, 44, 45, 50} dB-Hz. The median error minimum
for SDPA is presented using blue asterisks. The median error minimum for SAGE
is presented using green circles. The error bar illustrates the first and third quartile
positions for both SDPA and SAGE. The blue error bar illustrates the quartile posi-
tions of the error minima using SDPA, whereas the SAGE error bar is illustrated in
green.

Tables 4.1 and 4.2 provide statistics for SDPA and SAGE, respectively, on the

probability that a given decomposition ensemble εp ∈ {0, 1, . . . , 16} yielded the error

minimum between the estimate and true search spaces. Comparison between these

two tables provide a couple of insights. First, the assumptions outlined in Section 4.2.4

on fixing the maximum number of ensembles permitted for a given integration period

are justified, given the sparsity of error minimums at higher values of εp. Second, use

of SDPA typically yields a greater number of decomposition ensembles than SAGE,

so a greater number of rays will typically compose the error minimum for a given

value of C/N0 if SDPA is used, versus SAGE. This insight is not globally the case,

but is typical. Cells within the table may be rounded such that the sum of cells in a

column varies slightly from one.
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Table 4.1: Probability that SDPA decomposition ensemble index εp yields the error
minimum between the estimate and true search spaces for a given value of C/N0.

C/N0

εp 35 40 41 42 43 44 45 50

0 0.958 0.915 0.924 0.884 0.843 0.809 0.780 0.444
1 0.026 0.064 0.053 0.082 0.112 0.132 0.138 0.225
2 0.016 0.013 0.013 0.020 0.028 0.043 0.049 0.172
3 0 0.007 0.007 0.008 0.009 0.008 0.024 0.077
4 0 0.001 0.002 0.004 0.002 0.006 0.003 0.027
5 0 0 0 0.003 0.002 0.002 0.003 0.018
6 0 0 0 0 0 0 0.002 0.008
7 0 0 0 0 0 0 0 0.007
8 0 0 0 0 0 0 0.001 0.002
9 0 0 0 0 0.002 0 0 0.005

10 0 0 0 0 0 0 0 0.001
11 0 0 0 0 0 0 0 0.005
12 0 0 0 0 0 0 0 0.003
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0.003
16 0 0 0 0 0 0 0 0.001
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Table 4.2: Probability that SAGE decomposition ensemble index εp yields the error
minimum between the estimate and true search spaces for a given value of C/N0.

C/N0

εp 35 40 41 42 43 44 45 50

0 0.968 0.944 0.929 0.895 0.862 0.817 0.772 0.393
1 0.030 0.055 0.069 0.101 0.130 0.162 0.211 0.513
2 0.002 0.001 0.002 0.004 0.008 0.019 0.016 0.081
3 0 0 0 0.001 0 0.001 0.001 0.008
4 0 0 0 0 0 0 0 0.003
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0.001
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0

130



4.4 Analysis of Decomposition Results

These results clearly indicate that at higher values of C/N0, the SAGE-based

algorithm provides superior performance in the estimation of the search space for

received GNSS data. However, as noise becomes more dominant, SDPA is indicated

to be the more promising choice for decomposing received data. Section 3.4.2 discusses

the motivation for developing SDPA and comparing it to SAGE. SAGE is believed

to be the state-of-the-art in the decomposition of a data vector of duration equal to

the integration period. As discussed in Section 3.4.2 in the context of estimating ray

waveform amplitude values, the serial correlation nature of SAGE presents the risk of

noise content being weighted more heavily relative to signal content. This weighting

of noise may lead to outsize or undersized amplitude estimates for one ray waveform,

which impacts the simultaneous estimation of other rays in the search space. This

impact leads to a loss of opportunity in accurately estimating ray waveforms. The

motivation for comparing SDPA and SAGE outlined in Section 3.4.2 is revealed to be

founded.

4.5 Summary

This chapter outlines the results of comparisons between SDPA and SAGE

using simulated data. These results clearly indicate that at lower values of C/N0

(particularly at values less than or equal to 40 dB-Hz when using a 1 msec integration

period), SDPA outperforms SAGE in the decomposition of received data.
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V. Stopping Criteria Methodology, Results, and Analysis

5.1 Introduction

The stopping criteria is required in order to dictate to a decomposition algorithm

that processing of an integration period is to be halted. This is in lieu of a technique

specifically designed to estimate the number of received multipath rays present in an

integration period. The use of a stopping criteria follows the trend in literature (as

discussed in Section 2.8.4) of making use of the residual to determine whether the

algorithm should be halted.

This chapter of the dissertation presents the methodology, results and analysis

of the stopping criteria employed to halt decomposition and parameterization of PIT

p for both SDPA and SAGE. Section 5.2 discusses both the methodology and the

rationale behind the methodology used to establish the stopping criteria. Section 5.3

outlines the simulation scenario that is employed to obtain results required to establish

the stopping criteria. Section 5.4 provides the stopping criteria results themselves.

Section 5.5 provides analysis of the results obtained in Section 5.4.

5.2 Stopping Criteria Methodology

The procedure for establishing the threshold Υ to be used for the stopping

criteria is outlined in this section of the document. The stopping criteria threshold Υ

is discussed in Section 3.3.13 and used specifically to provide the decision threshold

by which the stopping criteria statistic Fpε is evaluated, as expressed in (3.91). This

section provides a detailed explanation of the process by which Υ is obtained, and

extends the explanation provided previously in [142].

The objective in establishing the stopping criteria threshold is to define the most

likely value of Fpε for which the RMS error Epε is minimized between the estimated

signal content within a search space R̂pε and the “true” signal content within a search

space Sp. This value serves as the threshold Υ. If Fpε is greater than Υ, then it

is asserted that further iterations of the decomposition process will reduce Epε . If
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Fpε is equal to or less than Υ, then it is asserted that no further iterations of the

decomposition process will reduce Epε .

There is a distinct difference between Epε and Epε , in that the decomposition

algorithm absolutely has the potential to output ensembles containing ray waveforms

that have parameterized noise content within Rp. If noise content is parameterized,

and the ray waveform associated with this noise parameterization is included in R̂pε ,

then Epε will generally be reduced, indicating a closing of the gap between the re-

ceived and the estimate search grids. Epε , on the other hand, will generally increase,

indicating a widening of the gap between the estimate and truth search grids. The al-

gorithm is intended to decompose and parameterize as much signal content contained

within the received search grid as possible. Simultaneously, the algorithm is intended

to decompose and parameterize as little noise content contained within the received

search grid as possible. The intent of embedding a stopping criteria with a threshold

Υ within the decomposition process is to provide a means by which the algorithm

manages this tension between competing goals. If there is no objection to parameter-

izing noise content, then the algorithm may be permitted to decompose indefinitely.

There are, however, two problems with this approach. The first problem is that noise

parameters provide no value to SDPA and the presence of noise parameters may

disrupt efforts to track multipath parameters over time. The second problem with

indefinite decomposition is that processing time is wasted on the decomposition and

parameterization of noise content that does not provide any additional illumination to

the algorithm user regarding the characteristics of the local environment surrounding

the GNSS receiver antenna. In short, decomposing and parameterizing noise content

wastes time and may create confusion for a notional automated multipath parame-

ter tracking algorithm that would make use of SDPA direct path and multipath ray

parameter estimates, so a stopping criteria is established in order to maximize the de-

composition and parameterization of signal content while simultaneously minimizing

the decomposition and parameterization of noise content.
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Sp is defined as follows, making use of (3.31):

Sp = grid

(
Mp∑
m=0

rpm , τwindow, fwindow,∆τinput,∆finput

)
(5.1)

To compute the RMS error Epε between R̂pε and Sp, the following equation is

used:

Epε =

√√√√ 1

NτNf

Nτ−1∑
y=0

Nf−1∑
z=0

∣∣∣Sp − R̂pε

∣∣∣2 (5.2)

Before the stopping criteria was included in the SDPA, the algorithm would

continue processing until Epε could not be further reduced. Epε , on the other hand,

typically reaches a minimum after an earlier iteration than the final iteration avail-

able for p. The objective in defining and deploying the threshold Υ is to direct the

algorithm to halt processing when the minimum value of Epε is reached. Because

the SDPA is designed to decompose and parameterize generic signals described by

(3.20) and obtained from undefined environments where outside information (which

could be used to provide articulation of the environment from which a received signal

originates) is not permitted to be included in the algorithm, a formal derivation of

the optimum threshold Υ is not considered to be practical for this research. If the

received waveform rp described in (3.20) is characterized prior to SDPA processing,

and information could be provided to the algorithm to provide further definition to

the structure of rp, a formal derivation would be much more tractable.

Υ is determined by relating the true iteration after which to halt decomposition

with the mean iteration from simulation after which to halt decomposition [142]. More

specifically, Υ is defined as follows:

Υ = arg min
ψ


√√√√√√ 1

ΣP

µmax∑
µ=0

Pµ>0

(
ε̄ν|µ,ψ − µ

)2

 (5.3)
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where ψ ∈ [0, 1], Pµ is the number of integration periods considered for which the

ensemble index ε that minimizes Epε for PIT p is equal to µ, µmax is the largest

ensemble index ε for which Epε is minimized among all integration periods considered,

and ΣP and ε̄ν|µ,ψ are defined using the following two equations, respectively:

ΣP =

µmax∑
µ=0

Pµ>0

1 (5.4)

ε̄ν|µ,ψ =
1

Pµ

pmax∑
p=0

εpµ=µ

(
εpψ
)

(5.5)

where εpµ is the ensemble index for PIT p in which Epε is minimized and εpψ is the

ensemble index for PIT p after which decomposition processing would halt given trial

threshold ψ.

The equations above provide a rigorous mathematical explanation for how the

stopping criteria threshold is obtained, but the equations themselves don’t commu-

nicate simply how the stopping criteria threshold is determined. In words, the idea

behind the stopping criteria again is to relate the average ensemble index after which

decomposition would halt given trial threshold ψ, ε̄ν|µ,ψ, to the ensemble index after

which decomposition should actually halt (the ensemble index for PIT p after which

Epε is minimized). ε̄ν|µ,ψ is expected to increase linearly with unity slope as µ is

incremented. By taking this approach to determining Υ, arbitrary constraints that

would be placed in the decomposition process through use of a ROC curve or another

detection theoretic technique found in literature are not placed on the SDPA process.

The value of ψ for which the RMS error is minimized between µ and ε̄ν|µ,ψ for every

value of µ where a value of ε̄ν|µ,ψ is asserted as Υ. With noise-free data, the mean

decomposition iteration after which to halt when applying Υ should equal the true

iteration after which to halt [142]. In this research Υ is determined experimentally

through simulation.
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5.2.1 ROC Curve Generation. As discussed in Section 2.8.2, correct detec-

tion occurs in cases when SDPA algorithm iteration progresses the algorithm towards

reaching the error minimum between the truth and the estimate or iteration has pro-

gressed to the point when the error minimum is reached with the current iteration.

A false alarm occurs in iteration when the error minimum has already been reached

and further iteration is not necessary. Therefore, the probability of correct detection

Pd for threshold ψ ∈ [0, 1] is computed as follows:

Pd(ψ) =

∑pmax

p=0 (Σ1)∑pmax

p=0

(
εpµ
) (5.6)

where

Σ1 =

εpµ−1∑
εp=0

Fpε≥ψ

1 (5.7)

The probability of false alarm Pfa for threshold ψ is computed as follows:

Pfa(ψ) =

∑pmax

p=0 (Σ0)∑pmax

p=0

(
(εp)final − εpµ + 1

) (5.8)

where (εp)final is the last ensemble index generated during the decomposition process

when Υ = 0 and

Σ0 =

(εp)final∑
εp=εpµ
Fpε≥ψ

1 (5.9)

5.3 Stopping Criteria Simulation Scenario

Simulations are employed to develop a stopping criteria to be used within a

decomposition algorithm. Simulations consist of the independent generation of 1000

instances of a 1 msec integration period for each of the following values of C/N0: 40,

45, and 50 dB-Hz. This range of values for C/N0 provides evaluation of C/N0 in equal

proportions between values of C/N0. This proportionality should provide threshold
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information that is applicable to processing received data recorded in a challenged

urban environment. The same assumptions employed to reduce computational bur-

den that are discussed in Section 4.2.4 are applied for stopping criteria simulations

as well. In fact, the same data sets for C/N0 equal to 40, 45, and 50 dB-Hz are used.

Decomposition occurs for each of these data vectors with the stopping criteria thresh-

old Υ = 0, and the results of decomposition are concatenated. This concatenation

yields a waveform parameter data set consisting of decomposition outputs for 3000

integration periods. This waveform parameter data set is then evaluated using the

operations outlined in Section 5.2 to obtain an appropriate value of Υ. The receiver

parameters are discussed in Section 4.2.1. The simulated signal structure multipath

propagation model is discussed in Section 4.2.2. The parameters used to construct

the search spaces found in Sections 3.3.5 and 3.3.9 are found in Section 4.2.3.

5.4 SDPA- and SAGE-based Decomposition Stopping Criteria Simula-

tion Results

Section 5.4.1 discusses and illustrates the results leading to the determination of

the optimal stopping criteria threshold Υ for SDPA-based processing. Section 5.4.2

discusses and illustrates the results leading to Υ for SAGE-based processing. The

definition of optimality in the context of the figures provided in this section of the

dissertation is provided explicitly by (5.3).

5.4.1 SDPA. Figure 5.1 illustrates the application of (5.3) in order to de-

termine the optimal threshold value Υ = 0.985. Figure 5.2 illustrates the scenario by

which the RMS error associated with the optimal threshold value Υ illustrated in Fig-

ure 5.1 is obtained. Figure 5.3 illustrates a suboptimal scenario where the threshold

is 0.01 less than the optimal scenario illustrated in Figure 5.2. This scenario is a per-

missive scenario, where decomposition is allowed to continue beyond the point where

the optimal number of ensembles are obtained. Figure 5.4 illustrates a suboptimal

scenario where the threshold is 0.01 greater than the optimal scenario illustrated in
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Figure 5.2. This scenario is a restrictive scenario, where decomposition is not allowed

to continue to the point where the optimal number of ensembles are obtained. Figure

5.5 illustrates the ROC curve generated using (5.6) and (5.8).
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Figure 5.1: Illustration of the application of (5.3) in order to determine the optimal
threshold value Υ = 0.985465 for SDPA. The blue line represents the RMS error
between the true iteration to stop (µ) and the mean stopping iteration based on the
threshold value (ε̄ν|µ,ψ) (among all values of µ ∈ {0, 1, . . . , µmax}) for a given trial
threshold value ψ. The green asterisk represents the position where the minimization
argument in (5.3) is satisfied, so ψ = Υ for this position. Note that the value of Υ
can be determined definitively, given this resulting illustration from simulation.

5.4.2 SAGE. Figure 5.6 illustrates the application of (5.3) in order to deter-

mine the optimal threshold value Υ = 0.984063. Figure 5.7 illustrates the scenario by

which the RMS error associated with the optimal threshold value Υ illustrated in Fig-

ure 5.6 is obtained. Figure 5.8 illustrates a suboptimal scenario where the threshold

is 0.01 less than the optimal scenario illustrated in Figure 5.7. This scenario is a per-

missive scenario, where decomposition is allowed to continue beyond the point where

the optimal number of ensembles are obtained. Figure 5.9 illustrates a suboptimal

scenario where the threshold is 0.01 greater than the optimal scenario illustrated in
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Figure 5.2: Illustration of the RMS error scenario by which the RMS error asso-
ciated with the optimal threshold value Υ = 0.985465 is obtained for SDPA. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ. The
closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better the
threshold, per (5.3). Note that the optimal threshold yields a probability of detection
Pd = 0.812 and a probability of false alarm Pfa = 0.401.

Figure 5.7. This scenario is a restrictive scenario, where decomposition is not allowed

to continue to the point where the optimal number of ensembles are obtained. Figure

5.10 illustrates the ROC curve generated using (5.6) and (5.8).

5.5 Analysis of Decomposition Stopping Criteria Results

Figures 5.1 and 5.6 illustrate how the optimal threshold value Υ for both SDPA

and SAGE are obtained. Both of these figures provide the satisfying result that the

descent into the error minimum is steep, indicating that the algorithm used to ob-

tain the stopping criteria threshold provides a sharp delineation between values of ψ

above Υ versus values of ψ that are below Υ. The threshold values differ significantly
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Figure 5.3: Illustration of the RMS error scenario by which the RMS error as-
sociated with a permissive threshold value of Υ − 0.01 is obtained for SDPA. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ.
The closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better
the threshold, per (5.3). Note that this permissive threshold yields a probability of
detection Pd = 0.889 and a probability of false alarm Pfa = 0.550.

from those reported in [142], but the simulated receiver parameters contrast signifi-

cantly between [142] and the simulations presented in this document as well, so this

discrepancy is not a cause for alarm.

Figures 5.2 and 5.7 contrast significantly, in that the SDPA error scenario in

Figure 5.2 appears to be similar in nature to results in [142]. Figure 5.7, on the

other hand, does not even remotely approach the linear trajectory of data points as µ

increases. This suggests that the stopping criteria methodology may not be as suitable

for SAGE as for SDPA. In considering the results in Table 4.2, there just simply may

not be enough instances where SAGE-based decomposition has valid results beyond
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Figure 5.4: Illustration of the RMS error scenario by which the RMS error as-
sociated with a restrictive threshold value of Υ + 0.01 is obtained for SDPA. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ.
The closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better
the threshold, per (5.3). Note that this restrictive threshold yields a probability of
detection Pd = 0.603 and a probability of false alarm Pfa = 0.188.

the first few ensembles for decomposition of a given integration period, therefore data

obtained for points where µ is relatively high may be too noisy to reasonably use.

Figures 5.3 and 5.4 illustrate the use of permissive and restrictive thresholds,

respectively, for SDPA. These figures are provided for comparison with Figure 5.2.

Judging from inspection of the three figures, the optimal threshold does indeed appear

to originate from the figure that best illustrates the expected unity slope in data point

values. At µ > 14, there does appear to be some noise in the data point values in

Figure 5.2. This noise, however, does not appear to significantly impact the outcome.

The general preference is to obtain more ensembles per integration period, rather

than fewer, in order to have more data that can then be further processed at a
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Figure 5.5: Receiver Operating Characteristic (ROC) curve computed using (5.6)
and (5.8) for decomposition trials using SDPA. The blue curve is the ROC curve
itself. The green asterisk indicates the position on the ROC curve associated with the
optimal threshold value Υ = 0.985465. The optimal threshold yields a probability of
detection Pd = 0.812 and a probability of false alarm Pfa = 0.401. The ROC curve
computation makes use of (εp)final, which is bound by the the assumptions discussed
in Section 4.2.4. As (εp)final increases, Pfa is reduced, so constraining (εp)final has the
effect of distorting the true ROC curve, as computed using (5.6) and (5.8). Because
of this distortion, the ROC curve illustrated in this figure should not be treated as
conclusive. The purpose of including the ROC curve is to provide a comparative
instrument between SDPA and SAGE.

later time. Therefore, the positioning of data points above the unity slope line is

acceptable. The optimal threshold probability of correct detection of 0.812 is 7.7%

less than the permissive threshold probability of correct detection in Figure 5.3, while

the optimal threshold probability of false alarm is 14.9% less than the permissive

threshold probability of false alarm. This indicates that the optimum threshold is

indeed preferred over the permissive threshold. The optimal threshold probability of

correct detection is 20.9% more than the restrictive threshold probability of correct

detection in Figure 5.4, while the optimal threshold probability of false alarm is 21.3%

less than the restrictive threshold probability of false alarm. While this indicates that
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Figure 5.6: Illustration of the application of (5.3) in order to determine the optimal
threshold value Υ = 0.984063 for SAGE. The blue line represents the RMS error
between the true iteration to stop µ and the mean stopping iteration based on the
threshold value ε̄ν|µ,ψ (among all values of µ ∈ {0, 1, . . . , µmax}) for a given trial
threshold value ψ. The green asterisk represents the position where the minimization
argument in (5.3) is satisfied, so ψ = Υ for this position. Note that the value of Υ
can be determined definitively, given this resulting illustration from simulation.

perhaps a higher threshold would be favorable over Υ, again the bias is towards more

data, so this is decided to be acceptable. These results indicate that Υ should provide

a reasonable threshold for the stopping criteria when using SDPA.

Figures 5.8 and 5.9 illustrate the use of permissive and restrictive thresholds,

respectively, for SAGE. These figures are provided for comparison with Figure 5.7.

Judging from inspection of the three figures, none of the three thresholds appear to

have been determined all that well, though the results in Figure 5.6 would suggest

otherwise for the optimal threshold. Again, it’s possible that there just simply may not

be enough instances where SAGE-based decomposition had valid results beyond the

first few ensembles for decomposition. The optimal threshold probability of correct

detection of 0.637 is 11.0% less than the permissive threshold probability of correct
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Figure 5.7: Illustration of the RMS error scenario by which the RMS error asso-
ciated with the optimal threshold value Υ = 0.984063 is obtained for SAGE. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ. The
closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better the
threshold, per (5.3). Note that the optimal threshold yields a probability of detection
Pd = 0.637 and a probability of false alarm Pfa = 0.360.

detection in Figure 5.8, while the optimal threshold probability of false alarm is 13.3%

less than the permissive threshold probability of false alarm. This indicates that the

optimum threshold is indeed preferred over the permissive threshold. The optimal

threshold probability of correct detection is 28.6% more than the restrictive threshold

probability of correct detection in Figure 5.9, while the optimal threshold probability

of false alarm is 18.8% less than the restrictive threshold probability of false alarm.

Again, the optimum threshold is indeed the most preferable case for SAGE-based

decomposition.

When comparing Figures 5.5 and 5.10 for SDPA and SAGE, respectively, the

best ROC curve among several is generally considered to be the one for which inte-

144



0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

True iteration to stop

S
to

pp
in

g 
ite

ra
tio

n 
ba

se
d 

on
 th

re
sh

ol
d 

va
lu

e

Threshold value = 0.97406, P
d
 = 0.747, P

fa
 = 0.493

Figure 5.8: Illustration of the RMS error scenario by which the RMS error as-
sociated with a permissive threshold value of Υ − 0.01 is obtained for SAGE. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ.
The closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better
the threshold, per (5.3). Note that this permissive threshold yields a probability of
detection Pd = 0.747 and a probability of false alarm Pfa = 0.493.

gration under the ROC curve yields the highest number. This being the case, it is

clear that the implementation of the stopping criteria is treated more favorably by

SDPA, versus the SAGE-based algorithm, given the constraints placed on the two

algorithms. The SDPA probability of correct detection for the optimum threshold of

0.812 is 17.5% higher than that for SAGE, while the probability of false alarm for

SDPA of 0.401 is 4.1% higher. Furthermore, the weak ROC curve for SAGE raises

the concern that it may not be appropriate to make use of a stopping criteria in the

SAGE algorithm at all. In short, this data indicates that the stopping criteria is more

suited for use in SDPA than SAGE. Further consideration of an appropriate stopping

criteria for SAGE is recommended, but is not in the scope of this research.
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Figure 5.9: Illustration of the RMS error scenario by which the RMS error as-
sociated with a restrictive threshold value of Υ + 0.01 is obtained for SAGE. The
blue asterisks are the mean stopping iteration values (ε̄ν|µ,ψ) given the true stopping
iteration value µ. The green line illustrates the ideal relationship between the true
iteration to stop and the mean stopping iteration based on the threshold value ψ.
The closer the slope to unity of a line fit obtained from the values of ε̄ν|µ,ψ, the better
the threshold, per (5.3). Note that this restrictive threshold yields a probability of
detection Pd = 0.351 and a probability of false alarm Pfa = 0.172.

Consideration of the comparative effectiveness of the stopping criteria in halting

each of the two algorithms, SDPA and SAGE, would be a worthy objective. In the

case of the results presented in this chapter, it is determined that a more appropriate

stopping criteria should be established for SAGE before considering a head-to-head

comparison of the algorithms with stopping criteria implemented.

5.6 Summary

This chapter outlined the methodology, the simulation scenario, and the results

of the implementation of the stopping criteria in both SDPA and the SAGE-based

algorithm. The results indicate that the stopping criteria did indeed perform as
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Figure 5.10: Receiver Operating Characteristic (ROC) curve computed using (5.6)
and (5.8) for decomposition trials using SAGE. The blue curve is the ROC curve
itself. The green asterisk indicates the position on the ROC curve associated with the
optimal threshold value Υ = 0.984063. The optimal threshold yields a probability of
detection Pd = 0.637 and a probability of false alarm Pfa = 0.360. The ROC curve
computation makes use of (εp)final, which is bound by the the assumptions discussed
in Section 4.2.4. As (εp)final increases, Pfa is reduced, so constraining (εp)final has the
effect of distorting the true ROC curve, as computed using (5.6) and (5.8). Because
of this distortion, the ROC curve illustrated in this figure should not be treated as
conclusive. The purpose of including the ROC curve is to provide a comparative
instrument between this figure and Figure 5.5.

desired in determining a suitable stopping criteria. In the case of the SAGE-based

algorithm, further research is required to determine the suitability of the methodology

outlined in this chapter within the algorithm.
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VI. Conclusion

6.1 Summary

The research outlined in this dissertation involved the development of an al-

gorithm, SDPA, which is used to estimate received multipath waveforms in GNSS

signals. SDPA is described canonically in Chapter III. The purpose of this algorithm

is to obtain multipath parameters which can be used to construct models for describ-

ing the effects that the local environment surrounding the GNSS receiver may have

on a received GNSS signal. With these models, simulators could be constructed in

order to generate data used to test receiver signal processing techniques.

The development of SDPA is a component of the two principle contributions to

the community made with this research. The first is the development of SDPA itself

and comparison with SAGE, which is believed to be the state-of-the-art in GNSS

multipath parameterization, given the constraints on the problem. SDPA is shown

through simulation to outperform the state-of-the-art in estimating the signal content

within the search spaces that are associated with simulated generations of received

GNSS data in some limited scenarios. More specifically, SDPA is shown in Chapter

IV to outperform SAGE-based decomposition when simulated data of duration equal

to the integration period of 1 msec and a value of C/N0 less than or equal to 40 dB-Hz

is considered. This finding exposes the existence of scenarios where decomposition of

GNSS received signals is more appropriately performed using SDPA rather than with

SAGE.

The second contribution to the community, the development of a stopping crite-

ria to be used in the SDPA architecture and a comparison between SDPA and SAGE

of the results of optimizing the threshold associated with the stopping criteria, is pre-

sented in Chapter V. This stopping criteria is used to halt a decomposition engine

(be it SDPA or SAGE) at the point when parameterization of salient components

within a recorded signal has been completed.

The SDPA requires further research in order to determine whether there are

features of the algorithm that could be enhanced or applied differently from how it
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is used for the research presented in this dissertation. This research is presented

in Section 6.2. Generally speaking, SDPA requires further development in order to

effectively parameterize recorded signals in a wide variety of settings or circumstances.

6.2 Recommendations for Future Research

There are several recommendations for future research. Each of these recom-

mendations is asserted with the objective of furthering the state of the art in the

decomposition of recorded GNSS signals:

• The explicit use of SDPA in decomposing signals from GLONASS, Galileo,

or Compass constellations. Section 2.10 presents discussion of the similarities

and differences between the signals from each of the four GNSS constellations.

With the exception of the use of frequency division multiplexing in GLONASS,

the signal structures are very similar, and should only require variation in the

matrix-vector multiplication operations used to decode received signal vectors

in the eventual generation of search space matrices. Once the frequency divi-

sion multiplexing in GLONASS is addressed through the use of multi-carrier

receiver processing (which can be performed in software depending on the re-

ceiver hardware used in recording signals), it is believed that the variation in

SDPA required to process signals from GNSS constellations other than GPS is

minimal.

• The use of SDPA in an automated algorithm that makes use of multi-target

tracking theory to track multipath ray waveform parameters over time. Findings

of the initial research into the feasibility of SDPA in an automated tracking

algorithm is discussed in [149].

• The explicit consideration of SDPA in the mitigation of multipath, as is done

using MEDLL.

• The explicit consideration of SDPA in the estimation of parameters defining

individual direct path and multipath ray waveforms, rather than estimating ray
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waveform parameters with the single intent of replicating received search space

matrices.

• The examination and implementation of emerging decomposition techniques,

such as Empirical Mode Decomposition, in an algorithmic framework designed

to decompose recorded GNSS signals. An example framework for signal decom-

position is presented in Figure 3.2. This framework may require adaptation in

order to accommodate the implementation of a decomposition technique differ-

ing from that developed for SDPA or for SAGE-based processing.

• The consideration of compressive sensing techniques to simplify the signals be-

ing decomposed, thus reducing the latency associated with decomposition and

parameterization.

• The examination and integration of one-dimensional optimization methods mak-

ing use of maximum likelihood estimation, such as that used in SAGE, in order

to improve SDPA decomposition performance. Though it is shown in this dis-

sertation that SDPA actually outperforms SAGE in certain scenarios, SAGE

generally outperforms SDPA. SAGE has the advantage of using correlation re-

sults directly, in order to obtain relative propagation delay offset estimates. It

is possible, as indicated by offline simulation, that SAGE may have an inherent

advantage in the estimation of the relative propagation delay offset.

• The consideration of SDPA in the presence of interference that is not structured

as a GNSS signal. Multipath is structured as a replica of a GNSS signal, but

the presence of other types of interference in the environment is not considered

in this research.

• The integration of GNSS receiver outputs in order to inform the SDPA on the

structure of the signals being decomposed and parameterized.

• The integration of vision-based situational indicators into the SDPA. Use of

these indicators may provide insight into the multipath scenario that may be

150



presented to the GNSS receiver, informing the SDPA design in the rapid esti-

mation of multipath ray waveform parameters.

• The consideration of applicability to weighted search space content. Portions of

the search space where signal content is high could be weighted in decomposition

more heavily than areas where signal content is less. This may have the effect

of improving search space estimates, particularly as the algorithm iterates.

• Further consideration of an appropriate stopping criteria for the SAGE-based

algorithm. The stopping criteria outlined in Chapter V does not appear to

perform as desired when using SAGE. Further research is required to determine

why this is the case.

• The application of SDPA-based decomposition to generalized wireless commu-

nications signaling, particularly signals that make use of direct sequence spread

spectrum waveform designs. There is a possibility that applying SDPA in a wire-

less communications receiver may yield improved multipath mitigation, relative

to conventional multipath mitigation techniques employed in spread spectrum

signaling.

• The consideration of SDPA-based decomposition in radar applications. Radar

contends with the impact of multipath in radar receiver signal processing. It’s

possible that the use of a decomposition engine such as SDPA may improve

multipath estimation and mitigation performance in sensing through the use of

radar.
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